Advertisement

Indian Journal of Microbiology

, Volume 58, Issue 2, pp 227–233 | Cite as

Annotation and De Novo Sequence Characterization of Extracellular β-Fructofuranosidase from Penicillium chrysogenum Strain HKF42

  • Vaibhav V. Gujar
  • Priya Fuke
  • Anshuman A. Khardenavis
  • Hemant J. Purohit
Short Communication

Abstract

The genome of a fungal strain Penicillium chrysogenum strain HKF42, which can grow on 20% sucrose has been annotated for 7595 protein coding sequences. On mining of CAZymes, we could annotate a β-fructofuranosidase gene responsible for fructo-oligosaccharides (FOS) synthesis which is a known prebiotic. The enzyme activity was demonstrated and validated with the generation of FOS as kestose and nystose.

Keywords

Prebiotic Fructo-oligosaccharides Penicillium β-Fructofuranosidase 

Notes

Acknowledgements

Authors would like to acknowledge to CSIR-NEERI for providing essential resources for the research work [KRC No. CSIR-NEERI/KRC/2017/SEP/EBGD/2]. Vaibhav Gujar is thankful to University Grants Commission (UGC), New Delhi for providing Junior and Senior Research Fellowship for carrying out this research.

Supplementary material

12088_2017_704_MOESM1_ESM.doc (512 kb)
Supplementary material 1 (DOC 512 kb)

References

  1. 1.
    Vega R, Zuniga-Hansen ME (2014) A new mechanism and kinetic model for the enzymatic synthesis of short-chain fructooligosaccharides from sucrose. Biochem Eng J 82:158–165.  https://doi.org/10.1016/j.bej.2013.11.012 CrossRefGoogle Scholar
  2. 2.
    Huang MP, Wu M, Xu QS, Mo DJ, Feng JX  (2016) Highly efficient synthesis of fructooligosaccharides by extracellular fructooligosaccharide-producing enzymes and immobilized cells of Aspergillus aculeatus M105 and purification and biochemical characterization of a fructosyltransferase from the fungus. J Agric Food Chem 64:6425–6432.  https://doi.org/10.1021/acs.jafc.6b02115 CrossRefPubMedGoogle Scholar
  3. 3.
    Lorenzoni ASG, Aydos LF, Klein MP, Rodrigues RC, Hertz PF (2014) Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydr Polym 103:193–197.  https://doi.org/10.1016/j.carbpol.2013.12.038 CrossRefPubMedGoogle Scholar
  4. 4.
    Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodrigues-Herrera R, Teixeira JA, Aguilar CN (2014) Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 36:259–267.  https://doi.org/10.3109/07388551.2014.953443 CrossRefPubMedGoogle Scholar
  5. 5.
    Marin-Navarro J, Talens-Perales D, Polaina J (2015) One-pot production of fructooligosaccharides by a Saccharomyces cerevisiae strain expressing an engineered invertase. Appl Microbiol Biotechnol 99:2549–2555.  https://doi.org/10.1007/s00253-014-6312-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Aguiar-oliveira E, Maugeri F (2012) Effects of lyophilization on the catalytic properties of extracellular fructosyltransferase from Rhodotorula sp. LEB-V10. Int Res J Biotechnol 3:96–111Google Scholar
  7. 7.
    Bali V, Panesar PS, Bera MB, Panesar R (2013) Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr 55:1475–1490.  https://doi.org/10.1080/10408398.2012.694084 CrossRefGoogle Scholar
  8. 8.
    Mussatto SI, Prata MB, Rodrigues LR, Teixeira JA (2012) Production of fructooligosaccharides and β-fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. Eur Food Res Technol 235:13–22.  https://doi.org/10.1007/s00217-012-1728-5 CrossRefGoogle Scholar
  9. 9.
    Nascimento AKC, Nobre C, Cavalcanti MTH, Teixeira JA, Porto ALF (2016) Screening of fungi from the genus Penicillium for production of β-fructofuranosidase and enzymatic synthesis of fructooligosaccharides. J Mol Catal B Enzym 134:70–78.  https://doi.org/10.1016/j.molcatb.2016.09.005 CrossRefGoogle Scholar
  10. 10.
    Xu Q, Zheng X, Huang M, Wu N, Yan Y, Pan J, Yang Q, Duan CJ, Liu JL, Feng JX (2014) Purification and biochemical characterization of a novel β-fructofuranosidase from Penicillium oxalicum with transfructosylating activity producing neokestose. Process Biochem 50:1237–1246.  https://doi.org/10.1016/j.procbio.2015.04.020 CrossRefGoogle Scholar
  11. 11.
    Deshmukh R, Mathew A, Purohit HJ (2014) Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. J Biosci Bioeng 117:443–448.  https://doi.org/10.1016/j.jbiosc.2013.09.017 CrossRefPubMedGoogle Scholar
  12. 12.
    Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18.  https://doi.org/10.1186/2047-217X-1-18 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Borodovsky M, Lomsadze A (2011) Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr Protoc Bioinforma 33:6494–6506.  https://doi.org/10.1002/0471250953.bi0406s35 Google Scholar
  14. 14.
    Hu L, Taujale R, Liu F, Song J, Yin Q, Zhang Y, Guo J, Yin Y (2016) Draft genome sequence of Talaromyces verruculosus (“Penicillium verruculosum”) strain TS63-9, a fungus with great potential for industrial production of polysaccharide-degrading enzymes. J Biotechnol 219:5–6.  https://doi.org/10.1016/j.jbiotec.2015.12.017 CrossRefPubMedGoogle Scholar
  15. 15.
    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) DbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:445–451.  https://doi.org/10.1093/nar/gks479 CrossRefGoogle Scholar
  16. 16.
    Yang J, Roy A, Zhang Y (2013) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595.  https://doi.org/10.1093/bioinformatics/btt447 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181.  https://doi.org/10.1093/nar/gkv342 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Specht T, Dahlmann TA, Zadra I, Kürnsteiner H, Kück U (2014) Complete sequencing and chromosome-scale genome assembly of the industrial progenitor strain P2niaD18 from the penicillin producer Penicillium chrysogenum. Genome Announc 2:4–5.  https://doi.org/10.1128/genomeA.00577-14 CrossRefGoogle Scholar
  19. 19.
    Prata MB, Mussatto SI, Rodrigues LR, Teixeira JA (2010) Fructooligosaccharide production by Penicillium expansum. Biotechnol Lett 32:837–840.  https://doi.org/10.1007/s10529-010-0231-y CrossRefPubMedGoogle Scholar
  20. 20.
    Sangeetha PT, Ramesh MN, Prapulla SG (2004) Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochem 39:755–760.  https://doi.org/10.1016/S0032-9592(03)00186-9 CrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2018

Authors and Affiliations

  • Vaibhav V. Gujar
    • 1
    • 2
  • Priya Fuke
    • 1
  • Anshuman A. Khardenavis
    • 1
    • 2
  • Hemant J. Purohit
    • 1
  1. 1.CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)NagpurIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR), CSIR-NEERINagpurIndia

Personalised recommendations