Skip to main content
Log in

Chemical Characterization, Crossfeeding and Uptake Studies on Hydroxamate Siderophore of Alcaligenes faecalis

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

We report the production of two types of siderophores namely catecholate and hydroxamate in modified succinic acid medium (SM) from Alcaligenes faecalis. Two fractions of siderophores were purified on amberlite XAD, major fraction was hydroxamate type having a λmax at 224 nm and minor fraction appeared as catecholate with a λmax of 264 nm. The recovery yield obtained from major and minor fractions was 297 and 50 mg ml−1 respectively. The IEF pattern of XAD-4 purified siderophore suggested the pI value of 6.5. Cross feeding studies revealed that A. faecalis accepts heterologous as well as self (hydroxamate) siderophore in both free and iron complexed forms however; the rate of siderophore uptake was more in case of siderophores complexed to iron. Siderophore iron uptake studies indicated the differences between hydroxamate siderophore of A. faecalis and Alc E, a siderophore of Alcaligenes eutrophus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sayyed RZ, Badgujar MD, Sonwane HM, Mhaske MM, Chincholkar SB (2005) Production of microbial iron chelators (siderophores) by fluorescent pseudomonads. Ind J Biotechnol 4:486–490

    Google Scholar 

  2. Sayyed RZ, Naphade BS, Chincholkar SB (2005) Ecologically competent rhizobacteria for plant growth promotion and disease management. In: Rai MK, Thakare PV, Chikhale NJ, Wadegaonkar PA, Ramteke AP (eds) Recent trends in biotechnology. Scientific Publisher, Jodhpur, pp 1–16

    Google Scholar 

  3. Sayyed RZ, Naphade BS, Joshi SA, Gangurde NS, Bhamare HM, Chincholkar SB (2009) Consortium of A. faecalis and P. fluorescens promoted the growth of Arachis hypogea (Groundnut). Asian J Microbiol Biotech Environ Sci 11(1):83–86

    Google Scholar 

  4. Sayyed RZ, Patel PR, Patel DC (2007) Plant growth promoting potential of P solubilizing Pseudomonas sp occurring in acidic soil of Jalgaon. Asian J Microbiol Biotech Environ Sci 9(4):925–928

    Google Scholar 

  5. Sayyed RZ, Naphade BS, Chincholkar SB (2007) Siderophore producing Alcaligenes faecalis promoted the growth of medicinal plants. J Med Aromat Plant Sci 29:1–5

    Google Scholar 

  6. Sayyed RZ, Chincholkar SB (2009) Siderophore producing A. faecalis more biocontrol potential vis-avis chemical fungicide. Curr Microbiol 58(1):47–51

    Article  PubMed  CAS  Google Scholar 

  7. Sayyed RZ, Patil AS, Gangurde NS, Joshi SA, Fulpagare UG, Bhamare HM (2008) Siderophore producing A. faecalis: a potent fungicide for sustainable biocontrol of groundnut phytopathogens. Res J Biotechnol 3:411–414

    Google Scholar 

  8. Stintzi A, Mayer JM (1994) Search for siderophores in microorganisms. In: Manja KR, Shankaran R (ed) Microbes for better living. MICON 94 proceedings of AMI conference, CFTRI, Mysore, India

  9. Kintu K, Dave BP, Dube HC (2001) Detection and chemical characterization of siderophores produced by certain fungi. Ind J Microbiol 41:87–91

    Google Scholar 

  10. Budzikiewicz W (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 204:209–228

    Google Scholar 

  11. Plessner O, Klapatch T, Guerinot ML (1993) Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59:1688–1690

    PubMed  CAS  Google Scholar 

  12. Mazzola M (2002) Mechanism of natural soil suppressiveness to soil borne diseases. Anton Leeuw 81:557–564

    Article  CAS  Google Scholar 

  13. Meyer JM, Stintzi A, Poole K (1999) The ferripyoverdine receptor of Pseudomonas aeruginosa PAOI recognizes the ferripyoverdines of Pseudomonas aeruginosa PAOI and Pseudomonas fluorescens ATCC 13525. FEMS Microbiol Lett 170:145–150

    Article  PubMed  CAS  Google Scholar 

  14. Guerinot ML (1994) Microbial iron transport. Ann Rev Microbiol 48:742–743

    Article  Google Scholar 

  15. Page WJ (1993) Growth conditions the demonstration of siderophores and iron-repressible outer membrane proteins in soil bacteria with an emphasis on free-living soil diazotrophs. In: Barton LL, Heming BC (ed) Iron chelation in plants and soil microorganisms, San Diego, pp 75–109

  16. Koster M, Ovaa W, Bitter W, Weisbeck PJ (1995) Multiple outer membrane receptors for uptake of ferric pseudobactin in Pseudomonas putida WCS358. Mol Gen Genet 248:735–743

    Article  PubMed  CAS  Google Scholar 

  17. Meyer JM, Abdallah MA (1978) The Fluorescent pigments of Fluorescent pseudomonas: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328

    CAS  Google Scholar 

  18. Meyer JM, Goeffroy VA, Baida N, Gardan L, Izard D, Limanceau P, Achouak W, Pellorini NJ (2002) Siderotyping typing a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Env Microbiol 68:2745–2753

    Article  CAS  Google Scholar 

  19. Milagres AMF, Machuca A, Napoleao D (1999) Detection of siderophore production from several fungi and bacteria by a modification of chrome Azurol S (CAS) agar plate assay. J Microbiol Methods 37:1–6

    Article  PubMed  CAS  Google Scholar 

  20. Schwyn R, Neilands JB (1987) Universal chemical assay for detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  21. Kersters K, De Ley J (1984) Genuc Alcaligenes. In: Krieg NR, Holt JG (eds) Bergy’s manual of systematic bacteriology, vol I. William and Wilkins, Baltimore, pp 361–373

    Google Scholar 

  22. Csaky TZ (1948) An estimation of bound hydroxylamine in biological materials. Acta Chem Scand 2:450–454

    Article  CAS  Google Scholar 

  23. Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  24. Sayyed RZ, Chincholkar SB (2006) Purification of siderophores of Alcaligenes faecalis on Amberlite XAD. Bioresour Technol 97:1026–1029

    Article  PubMed  CAS  Google Scholar 

  25. Koedam N, Witttouk E, Gaballa A, Gills A, Hofte M, Cornelis P (1994) Detection and differentiation of microbial siderophores by isoelectric focusing and Chrome Azurol S agar overlay. Biometals 7:287–291

    Article  PubMed  CAS  Google Scholar 

  26. Munsch P, Geoffroy V, Altassova T, Mayer JM (2000) Application of siderotyping for characterization of Pseudomonas tolaasii and Pseudomonas reactans, isolates associated with brown blotch disease of cultivated mushrooms. Appl Environ Microbiol 66:4834–4841

    Article  PubMed  CAS  Google Scholar 

  27. Fusch RM, Schaffer M, Goffery V, Meyer JM (2001) Siderotyping—a powerful tool for the characterization of pyoverdine. Curr Top Med Chem 1:31–35

    Article  Google Scholar 

  28. Crowley DE, Reid CPP, Szaniszlo PJ (1987) Modeling of iron availability in the plant rhizosphere. In: Manthey JA, Crowely DE, Luster DG (eds) Biochemistry of metal micronutrient in the rhizosphere. CRC press Inc, Boca Raton, pp 401–425

    Google Scholar 

Download references

Acknowledgments

Financial assistance to the corresponding author from BRNS, DAE, Government of India, New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Sayyed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayyed, R.Z., Chincholkar, S.B., Meyer, J.M. et al. Chemical Characterization, Crossfeeding and Uptake Studies on Hydroxamate Siderophore of Alcaligenes faecalis . Indian J Microbiol 51, 176–181 (2011). https://doi.org/10.1007/s12088-011-0129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0129-y

Keywords

Navigation