Skip to main content
Log in

Optimization of Process Variables for Lipase Biosynthesis from Rhizopus oligosporus NRRL 5905 Using Evolutionary Operation Factorial Design Technique

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Extracellular lipase was produced from Rhizopus oligosporus NRRL 5905 through solid state fermentation (SSF). To provide an optimum fermentation conditions for maximum lipase yield, five process variables (temperature, liquid–solid ratio, pH, incubation period and spore concentration) were optimized using evolutionary operation (EVOP) factorial design technique taking into account the interaction between the process variables. Optimization through EVOP resulted in around 3 fold increase in lipase activity (77 U gds−1) at a liquid–solid ratio of 1.5:1, fermentation temperature of 35°C, initial fermentation pH 6, incubation period 5 days and a spore concentration of 108 spores ml−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeger KE, Reetz TM (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  PubMed  CAS  Google Scholar 

  2. Kazlauskas RJ, Bornscheuer UT (1998) Biotransformations with lipases. In: Rehm HJ, Pihler G, Stadler A, Kelly JW (eds) Biotechnology, vol VIII. VCH, New York, pp 37–192

    Google Scholar 

  3. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  PubMed  CAS  Google Scholar 

  4. Saxena RK, Ghosh PK, Gupta R, Davidson WS, Bradoo S, Gulati R (1999) Microbial lipases: potential biocatalysts for the future industry. Curr Sci 77:101–115

    CAS  Google Scholar 

  5. Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  PubMed  Google Scholar 

  6. Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30

    Article  PubMed  CAS  Google Scholar 

  7. Hölker U, Lenz J (2005) Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol 8:301–306

    Article  PubMed  Google Scholar 

  8. Kohno M, Kugimiya W, Hashimoto Y, Morita Y (1994) Purification, characterization and crystallization of two types of lipase from Rhizopus niveus. Biosci Biotechnol Biochem 58:1007–1012

    Article  PubMed  CAS  Google Scholar 

  9. Kumar KK, Deshpande BS, Ambedkar SS (1993) Production of extracellular acidic lipase by Rhizopus arrhizus as a function of culture conditions. Hindustan Antibiot Bull 35:33–42

    PubMed  CAS  Google Scholar 

  10. Hiol A, Jonzo MD, Rugani N, Druet D, Sarda L, Comeau LC (2000) Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzym Microb Technol 26:421–430

    Article  CAS  Google Scholar 

  11. ul-Haq I, Idrees S, Rajoka MI (2002) Production of lipases by Rhizopus oligosporus by solid-state fermentation. Process Biochem 37:637–641

    Article  CAS  Google Scholar 

  12. Nahas E (1988) Control of lipase production by Rhizopus oligosporus under various growth conditions. Microbiology 134:227–233

    Article  CAS  Google Scholar 

  13. Box GEP (1957) Evolutionary operation: a method for increasing industrial productivity. Appl Stat 6:3–23

    Article  Google Scholar 

  14. Banerjee R, Bhattacharya BC (1992) Evolutionary operation (EVOP) to optimize protease biosynthesis by Rhizopus oryzae. Bioprocess Eng 8:151–155

    Article  CAS  Google Scholar 

  15. Banerjee R, Bhattacharyya BC (1993) Evolutionary operation (EVOP) to optimize three-dimensional biological experiments. Biotechnol Bioeng 41:67–71

    Article  PubMed  CAS  Google Scholar 

  16. Tunga R, Banerjee R, Bhattacharyya BC (1999) Optimization of n variable biological experiments by evolutionary operation-factorial design technique. J Biosci Bioeng 87:224–230

    Article  PubMed  CAS  Google Scholar 

  17. Kar B, Banerjee R, Bhattacharyya BC (2002) Optimization of physicochemical parameters for gallic acid production by evolutionary operation—factorial design technique. Process Biochem 37:1395–1401

    Article  CAS  Google Scholar 

  18. Kordel M, Hofmann B, Schomburg D, Schmid RD (1991) Extracellular lipase of Pseudomonas sp. strain ATCC-21808, puritication, characterization, crystallization, and preliminary X-ray diffraction data. J Bacteriol 173:4836–4841

    PubMed  CAS  Google Scholar 

  19. Davis OL (1954) Design and analysis of industrial experiments. Hafner Publishing Co, New York, pp 440–480

    Google Scholar 

  20. Adler YuP, Markos EV, Granovsky YuV (1975) The design of experiments to find optimal conditions. Mir Publishers, Moscow, pp 118–144

    Google Scholar 

  21. Box GEP, Hunter JS (1959) Condensed calculation for evolutionary operation programs. Technometric 1:77–95

    Article  Google Scholar 

  22. Pearson ES, Hartley HO (1962) Biometrika tables for statisticians 1. University Press, Cambridge, p 46

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Department of Biotechnology and Council of Scientific and Industrial Research for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rintu Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatra, P., Kumari, A., Garlapati, V. et al. Optimization of Process Variables for Lipase Biosynthesis from Rhizopus oligosporus NRRL 5905 Using Evolutionary Operation Factorial Design Technique. Indian J Microbiol 50, 396–403 (2010). https://doi.org/10.1007/s12088-011-0071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0071-z

Keywords

Navigation