A two-level traffic smoothing method for efficient cloud–IoT communications

Abstract

The Internet of Things (IoT) is an integration of smart sensing devices with connection ability for ease of communication. Introducing decision-making systems (DMSs) in the IoT for request processing improves the ease of access and service reliability for mobile end users. This paper proposes a two-level DMS for user service traffic smoothing (TS) in IoT communications. The two-level decision-making (2LDM) method employs traffic-aware queuing and minimum time scheduling processes for controlling the request message flows. The decision-making algorithm is modeled on time-dependent processing for minimizing the time delay in the queuing and request scheduling. The DMS considers the attributes associated with the cloud and devices to classify the request messages to prevent resource mapping failures. The disagreement between the request processing and cloud response is resolved optimally for improving the end user communication reliability in terms of the delay and resource mapping failures. Simulations evaluate the proposed DMS performance for the following metrics: sum rate, access delay, failure probability, response latency, and queue utilization. The results indicate that the proposed TS-2LDM outperforms the existing traffic controlling methods by improving the sum rate and queue utilization with controlled delay, failure, and response time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Rohit S, Agarwal P, Mahapatra RP (2020) Evolution in big data analytics on internet of things: applications and future plan. Multimedia Big Data Computing for IoT Applications 163:453–477

    Article  Google Scholar 

  2. 2.

    Tewari A, Gupta BB (2020) Security, privacy and trust of different layers in internet-of-things (IoTs) framework. Futur Gener Comput Syst 108:909–920

    Article  Google Scholar 

  3. 3.

    Wang J, Yang Y, Wang T, Sherratt RS, Zhang J (2020) Big data service architecture: a survey. Journal of Internet Technology 21(2):393–405

    Google Scholar 

  4. 4.

    Wang J, Tang Y, He S, Zhao C, Sharma PK, Alfarraj O, Tolba A (2020) LogEvent2vec: LogEvent-to-vector based anomaly detection for large-scale logs in internet of things. Sensors 20(9):2451

    Article  Google Scholar 

  5. 5.

    Sami N, Mufti T, Sohail SS, Siddiqui J, Kumar D Future internet of things (IOT) from cloud perspective: aspects, applications and challenges, in internet of things (IoT), pp. 515-532. Springer

  6. 6.

    Munoz R, Vilalta R, Yoshikane N, Casellas R, Martinez R, Tsuritani T, Morita I (2018) Integration of IoT, transport SDN, and edge/cloud computing for dynamic distribution of IoT analytics and efficient use of network resources. J Lightwave Technol 36(7):1420–1428

    Article  Google Scholar 

  7. 7.

    Wang J, Wu W, Liao Z, Sangaiah AK, Sherratt RS (2019) An energy-efficient offloading scheme for low latency in collaborative edge computing. IEEE Access 7:149182–149190

    Article  Google Scholar 

  8. 8.

    Al-Sharif ZA, Al-Saleh MI, Alawneh LM, Jararweh YI, Gupta B (2020) Live forensics of software attacks on cyber–physical systems. Futur Gener Comput Syst 108:1217–1229

    Article  Google Scholar 

  9. 9.

    Lin J-W, Chen C-H, Chang J (2013) QoS-aware data replication for data-intensive applications in cloud computing systems. IEEE Transactions on Cloud Computing 1(1):101–115

    Article  Google Scholar 

  10. 10.

    Deebak BD, Al-Turjman F, Aloqaily M, Alfandi O (2020) IoT-BSFCAN: A smart context-aware system in IoT-Cloud using mobile-fogging Future Generation Computer Systems 109:368–381. https://doi.org/10.1016/j.future.2020.03.050

    Article  Google Scholar 

  11. 11.

    Wang X, Ning Z, Guo S, Wang L (2020) Imitation learning enabled task scheduling for online vehicular edge computing. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2020.3012509

  12. 12.

    Tolba A, Al-Makhadmeh Z (2019) A recursive learning technique for improving information processing through message classification in IoT–cloud storage. Comput Commun 150:719–728

    Article  Google Scholar 

  13. 13.

    Mubeen S, Nikolaidis P, Didic A, Pei-Breivold H, Sandstrom K, Behnam M (2017) Delay mitigation in offloaded cloud controllers in industrial IoT. IEEE Access 5:4418–4430

    Article  Google Scholar 

  14. 14.

    Deng Y, Chen Z, Zhang D, Zhao M (2018) Workload scheduling toward worst-case delay and optimal utility for single-hop fog-IoT architecture. IET Commun 12(17):2164–2173

    Article  Google Scholar 

  15. 15.

    Wang J, Wu W, Liao Z, Sherratt RS, Kim GJ, Alfarraj O, Tolba A (2020) A probability preferred priori offloading mechanism in mobile edge computing. IEEE Access 8:39758–39767

    Article  Google Scholar 

  16. 16.

    Ning Z, Zhang K, Wang X, Guo L, Hu X, Hung J, Hu B, Kwok R (2020) Intelligent edge computing in internet of vehicles: a joint computation offloading and caching solution. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.2997832

  17. 17.

    Yousefpour A, Ishigaki G, Gour R, Jue JP (2018) On reducing IoT service delay via fog offloading. IEEE Internet Things J 5(2):998–1010

    Article  Google Scholar 

  18. 18.

    Zhao L, Sun W, Shi Y, Liu J (2018) Optimal placement of cloudlets for access delay minimization in SDN-based internet of things networks. IEEE Internet Things J 5(2):1334–1344

    Article  Google Scholar 

  19. 19.

    Shah-Mansouri H, Wong VWS (2018) Hierarchical fog-cloud computing for IoT systems: a computation offloading game. IEEE Internet Things J 5(4):3246–3257

    Article  Google Scholar 

  20. 20.

    Wang J, Qi H, Li K, Zhou X (2018) PRSFC-IoT: a performance and resource aware orchestration system of service function chaining for internet of things. IEEE Internet Things J 5(3):1400–1410

    Article  Google Scholar 

  21. 21.

    Fan Q, Ansari N (2018) Application aware workload allocation for edge computing-based IoT. IEEE Internet Things J 5(3):2146–2153

    Article  Google Scholar 

  22. 22.

    Dinh T, Kim Y (2017) An efficient sensor-cloud interactive model for on-demand latency requirement guarantee, 2017 IEEE International Conference on Communications (ICC)

  23. 23.

    Sun X, Ansari N (2018) Dynamic resource caching in the IoT application layer for smart cities. IEEE Internet Things J 5(2):606–613

    Article  Google Scholar 

  24. 24.

    Feng X, Zhang J, Ren C, Guan T (2018) An unequal clustering algorithm concerned with time-delay for internet of things. IEEE Access 6:33895–33909

    Article  Google Scholar 

  25. 25.

    Nan Y, Li W, Bao W, Delicato FC, Pires PF, Zomaya AY (2018) A dynamic tradeoff data processing framework for delay-sensitive applications in cloud of things systems. Journal of Parallel and Distributed Computing 112:53–66

    Article  Google Scholar 

  26. 26.

    Xu D, Jiao W, Yin Z, Wu B, Peng Y, Chen X, Chen F, Fang D (2018) Enabling robust and reliable transmission in internet of things with multiple gateways. Comput Netw 146:183–199

    Article  Google Scholar 

  27. 27.

    Sun J, Sun S, Li K, Liao D, Sangaiah AK, Chang V (2018) Efficient algorithm for traffic engineering in cloud-of-things and edge computing. Comput Electr Eng 69:610–627

    Article  Google Scholar 

  28. 28.

    Yamada Y, Shinkuma R, Iwai T, Onishi T, Nobukiyo T, Satoda K (2018) Temporal traffic smoothing for IoT traffic in mobile networks. Comput Netw 146:115–124

    Article  Google Scholar 

  29. 29.

    Kim S, Kim D-Y (2017) Efficient data-forwarding method in delay-tolerant P2P networking for IoT services. Peer-to-Peer Networking and Applications 11(6):1176–1185

    Article  Google Scholar 

  30. 30.

    Al-Osta M, Bali A, Gherbi A (2018) Event driven and semantic based approach for data processing on IoT gateway devices, Journal of Ambient Intelligence and Humanized Computing

  31. 31.

    Lee D, Lee H (2018) IoT service classification and clustering for integration of IoT service platforms. J Supercomput 74(12):6859–6875

    Article  Google Scholar 

  32. 32.

    Al-Qerem A, Alauthman M, Almomani A, Gupta BB (2020) IoT transaction processing through cooperative concurrency control on fog-cloud computing environment. Soft Comput 24(8):5695–5711

    Article  Google Scholar 

  33. 33.

    Chen M, Yixue H (2018) Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications 36(3):587–597

    Article  Google Scholar 

  34. 34.

    Mass J, Srirama SN, Chang C (2020) STEP-ONE: simulated testbed for edge-fog processes based on the opportunistic network environment simulator. J Syst Softw 110587

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amr Tolba.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Special Issue on Security of Mobile, Peer-to-peer and Pervasive Services in the Cloud

Guest Editors: B. B. Gupta, Dharma P. Agrawal, Nadia Nedjah, Gregorio Martinez Perez, and Deepak Gupta

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tolba, A. A two-level traffic smoothing method for efficient cloud–IoT communications. Peer-to-Peer Netw. Appl. (2021). https://doi.org/10.1007/s12083-021-01106-5

Download citation

Keywords

  • Decision-making system
  • IoT
  • Cloud
  • Queuing and scheduling
  • Traffic smoothing