Peer-to-Peer Networking and Applications

, Volume 11, Issue 2, pp 265–276 | Cite as

Resource allocation in cooperative cognitive radio networks towards secure communications for maritime big data systems

  • Tingting Yang
  • Hailong Feng
  • Chengming Yang
  • Ruilong Deng
  • Ge Guo
  • Tieshan Li


In this paper, an innovative framework labeled as cooperative cognitive maritime big data systems (CCMBDSs) on the sea is developed to provide opportunistic channel access and secure communication. A two-phase frame structure is applied to let Secondary users (SUs) entirely utilize the transmission opportunities for a portion of time as the reward by cooperation with Primary users (PUs). Amplify-and-forward (AF) relaying mode is exploited in SU nodes, and Backward induction method based Stackelberg game is employed to achieve optimal determination of SU, power consumption and time portion of cooperation both for non-secure communication scenario and secure communication. Specifically, a jammer-based secure communications scheme is developed to maximize the secure utility of PU, to confront of the situation that the eavesdropper could overheard the signals from SU i and the jammer. Close-form solutions for the best access time portion as well as the power for SU i and jammer are derived to realize the Nash Equilibrium. Simulation results validate the effectiveness of our proposed strategy.


Cooperative cognitive radio networks Maritime big data systems Secure communications 



This work was supported in part by China Postdoctoral Science Foundation under Grant 2013M530900, Special Financial Grant from the China Postdoctoral Science Foundation under Grant 2015T80238, Natural Science Foundation of China under Grant 61401057 and 61374114, Science and technology research program of Liaoning under Grant L2014213, Dalian science and technology project under Grant 2015A11GX018, Fundamental Research Program for Key Laboratory of the Education Department of Liaoning Province under Grant LZ2015006, Research Funds for the Central Universities, and also supported by Scientific Research Foundation for the Returned Overseas Chinese Scholars from Ministry of Human Resources and Social Security.


  1. 1.
    Lu R, Zhu H, Liu X, Liu JK, Shao J (2014) Toward efficient and privacy-preserving computing in big data era. IEEE Netw 28(4):46–50CrossRefGoogle Scholar
  2. 2.
    Cellular-news (2008) Maritime wimax network launched in Singapore,
  3. 3.
    John K (2012) Us navy ships to get 4G LTE broadband-will commercial vessels be next?
  4. 4.
    Shankar Pathmasuntharam J, Kong P-Y, Zhou M-T, Ge Y, Wang H, Ang C-W, Su W, Harada H (2008) TRITON: high speed maritime mesh networks. In: Proceedings of IEEE PIMRC , pp 1–5Google Scholar
  5. 5.
    Kalkan K, Levi A (2014) Key distribution scheme for peer-to-peer communication in mobile underwater wireless sensor networks. Peer-to-Peer Netw Appl 7(4):698–709CrossRefGoogle Scholar
  6. 6.
    Kolios P, Lambrinos L (2012) Optimising file delivery in a maritime environment through inter-vessel connectivity predictions. In: Proceedings of IEEE WiMob, pp 777–783Google Scholar
  7. 7.
    Zhou M-T, Hoang VD, Harada H, Pathmasuntharam JS, HAIGUANG W, Kong P-Y, Ang C-W, Ge Y, Wen S (2013) Triton: High-speed maritime wireless mesh network. IEEE Wirel Commun 20(5):134–142CrossRefGoogle Scholar
  8. 8.
    Zhou MT, Harada H (2012) Cognitive maritime wireless mesh/ad hoc networks. J Netw Comput Appl 35 (2):518–526CrossRefGoogle Scholar
  9. 9.
    Lin H-M, Ge Y, Pang A-C, Pathmasuntharam JS (2010) Performance study on delay tolerant networks in maritime communication environments. In: Proceedings of IEEE OCEANS, pp 1–6Google Scholar
  10. 10.
    Friderikos V, Papadaki K, Dohler M, Gkelias A, AH (2005) Linked waters. IEEE Commun Eng 3 (2):24–27CrossRefGoogle Scholar
  11. 11.
    Yang T, ZZ, Liang H, Deng R, Cheng N, Shen X (2014) Green energy and content aware data transmissions in maritime wireless communication networks. IEEE Trans Intell Transp Syst. doi: Google Scholar
  12. 12.
    Yang T, Liang H, Cheng N, Shen X (2014) Efficient scheduling for video transmissions in maritime wireless communication networks. IEEE Trans Veh Technol. doi: 10.1109/TVT.2014.2361120 Google Scholar
  13. 13.
    Yang T, Liang H, Cheng N, Shen X (2013) Towards video packets store-carry-and-forward scheduling in maritime wideband communication. In: Proceedings of IEEE GLOBECOM, pp 1–6Google Scholar
  14. 14.
    Chen C, Yan J, Lu N, Wang Y, Yang X, Guan X (2014) Ubiquitous monitoring for industrial cyber-physical systems over relay assisted wireless sensor networks. IEEE Trans Emerging Top Comput. doi: 10.1109/TETC.2014.2386615 Google Scholar
  15. 15.
    Dong M, Kimata T, Sugiura K, Zettsu K (2014) Quality-of-experience (QoE) in emerging mobile social networks. IEICE Trans 97(10):2606–2612CrossRefGoogle Scholar
  16. 16.
    Zhang H, Cheng P, Shi L, Chen J (2015) Optimal denial-of-service attack scheduling with energy constraint. IEEE Trans Autom Control. doi: 10.1109/TAC.2015.2409905 MathSciNetMATHGoogle Scholar
  17. 17.
    Ota K, Dong M, Zhu H, Chang S, Shen X (2011) Traffic information prediction in urban vehicular networks: a correlation based approach. In: Proceedings of IEEE WCNC, pp 1021–1025Google Scholar
  18. 18.
    Fang D, Su Z, Xu Q (2014) Analysis of data transmission based on the priority over grid structures. ICIC Express Lett, Part B: Appl 5(3):751–755Google Scholar
  19. 19.
    Zhang H, Cheng P, Shi L, Chen J (2013) Optimal dos attack policy against remote state estimation. In: Proceedings of IEEE CDC, pp 5444–5449Google Scholar
  20. 20.
    Dong M, Ota K, Lin M, Tang Z, Du S, Zhu H (2014) Uav-assisted data gathering in wireless sensor networks. J Supercomput 70(3):1142–1155CrossRefGoogle Scholar
  21. 21.
    Xu Q, Su Z, Zhang K, Ren P, Shen X (2015) Epidemic information dissemination in mobile social networks with opportunistic links. IEEE Trans Emerging Top Comput 3(3)Google Scholar
  22. 22.
    Yan Q, Li M, Yang Z, Lou W, Zhai H (2012) Throughput analysis of cooperative mobile content distribution in vehicular network using symbol level network coding. IEEE J Sel Areas Commun 30(2):484–492CrossRefGoogle Scholar
  23. 23.
    Yan J, Chen C, Luo X, Liang H (2014) Topology optimization based distributed estimation in relay assisted wireless sensor networks. IET Control Theory Appl. doi: 10.1049/iet--cta.2014.0163 Google Scholar
  24. 24.
    Chen J, Xu W, He S, Sun Y, Thulasiramanz P, Shen X (2010) Utility-based asynchronous flow control algorithm for wireless sensor networks. IEEE J Sel Areas Commun 28(7):1116–1126CrossRefGoogle Scholar
  25. 25.
    Xiao F, Xie X, Jiang Z, Sun L, Wang R (2015) Utility-aware data transmission scheme for delay tolerant networks. Peer-to-Peer Netw Appl. doi: 10.1007/s12083-015-0354-y Google Scholar
  26. 26.
    Xu Q, Su Z, Zhang K, Ren P, Shen X (2015) Epidemic information dissemination in mobile social networks with opportunistic links. IEEE Trans Emerging Top Comput. doi: 10.1109/TETC.2015.2414792 Google Scholar
  27. 27.
    Liang H, Cai LX, Huang D, Shen X, Peng D (2012) An smdp-based service model for interdomain resource allocation in mobile cloud networks. IEEE Trans Veh Technol 61(5):2222–2232CrossRefGoogle Scholar
  28. 28.
    Cheng N, Lu N, Zhang N, Mark J, Shen X (2013) Vehicle-assisted data delivery for smart grid: An optimal stopping approach. In: Proceedings of IEEE ICCGoogle Scholar
  29. 29.
    Wen M, Ota K, Li H, Lei J, Gu C (2015) Secure data deduplication with reliable key management for dynamic updates in cpss. IEEE Trans Comput Social Syst 2(4):137–147CrossRefGoogle Scholar
  30. 30.
    Wen M, Lu K, Zhang R, Lei J, Liang X, SX (2013) Parq: A privacy- preserving range query scheme over encrypted metering data for smart grid. IEEE Trans Emerging Top Comput 1(1):178–191CrossRefGoogle Scholar
  31. 31.
    Wen M, Lu K, Lei J, Li F, Li J (2015) Bdo-sd: an efficient scheme for big data outsourcing with secure deduplication:243–248Google Scholar
  32. 32.
    Wen M, Lu R, Lei J, Li H, Liang X, SX (2013) Sesa: an efficient searchable encryption scheme for auction in emerging smart grid marketing. Secur Commun Netw 7(1):234–243CrossRefGoogle Scholar
  33. 33.
    Tang Y, MJW (2012) A quadrature signaling based cooperative scheme for cognitive radio networks. In: Proceedings of GLOBECOMGoogle Scholar
  34. 34.
    Zhang N, Cheng N, Lu N, Zhou H, Mark J, Shen X (2013) Cooperative cognitive radio networking for opportunistic channel access. In: Proceedings of IEEE GLOBECOM, pp 1050–1055Google Scholar
  35. 35.
    Liu S, Zhu H, Du R, Chen C, Guan X (2013) Location privacy preserving dynamic spectrum auction in cognitive radio network. In: Proceedings of IEEE ICDCS, pp 256–265Google Scholar
  36. 36.
    Ren J, Zhang Y, Zhang N, Zhang D, Shen X Dynamic channel access to improve energy efficiency in cognitive radio sensor networks. IEEE Trans Wirel Commun. doi: 10.1109/TWC.2016.2517618
  37. 37.
    Deng R, Zhang Y, He S, Chen J, Shen X Maximizing network utility of rechargeable sensor networks with spatiotemporally-coupled constraints. IEEE J Sel Areas Commun. doi: 10.1109/JSAC.2016.2520181. to appear
  38. 38.
    Gao Z, Zhu H, Liu Y, Li M, Cao Z (2013) Location privacy in database-driven cognitive radio networks: attacks and countermeasures. In: Proceedings of IEEE INFOCOM, pp 2751–2759Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tingting Yang
    • 1
  • Hailong Feng
    • 1
  • Chengming Yang
    • 2
  • Ruilong Deng
    • 3
  • Ge Guo
    • 4
  • Tieshan Li
    • 1
  1. 1.Navigation CollegeDalian Maritime UniversityDalianChina
  2. 2.School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada
  4. 4.Information Technology CollegeDalian Maritime UniversityDalianChina

Personalised recommendations