Theoretical Ecology

, Volume 11, Issue 1, pp 55–69 | Cite as

The dispersal success and persistence of populations with asymmetric dispersal

  • D. Scott Rinnan


Asymmetric dispersal is a common trait among populations, often attributed to heterogeneity and stochasticity in both environment and demography. The cumulative effects of population dispersal in space and time have been described with some success by Van Kirk and Lewis’s average dispersal success approximation (Bull Math Biol 59(1): 107–137 1997), but this approximation has been demonstrated to perform poorly when applied to asymmetric dispersal. Here we provide a comparison of different characterizations of dispersal success and demonstrate how to capture the effects of asymmetric dispersal. We apply these different methods to a variety of integrodifference equation population models with asymmetric dispersal, and examine the methods’ effectiveness in approximating key ecological traits of the models, such as the critical patch size and the critical speed of climate change for population persistence.


Average dispersal success Asymmetric dispersal Integrodifference equation Moving habitat model Population persistence Climate change 



The author would like to thank Mark Kot for providing helpful feedback, guidance, and funding, and express gratitude to the reviewers for their helpful suggestions, especially Frithjof Lutscher and Mark Lewis. This material is based on work supported by the National Science Foundation under Grant No. DMS-1308365.


  1. Alpin YA, Merikoski J (2010) A simple proof for the inequality between the Perron root of a nonnegative matrix and that of its geometric symmetrization. Lobachevskii J Math 31(3):222–223CrossRefGoogle Scholar
  2. Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Chang Biol 10(9):1618–1626CrossRefGoogle Scholar
  3. Austerlitz F, Dutech C, Smouse P, Davis F, Sork V (2007) Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity 99(2):193–204CrossRefPubMedGoogle Scholar
  4. Baskett ML, Weitz JS, Levin SA (2007) The evolution of dispersal in reserve networks. Am Nat 170 (1):59–78CrossRefPubMedGoogle Scholar
  5. Beverton RJ, Holt SJ (1957) On the dynamics of exploited fish populations. Fish Investig Series II 19:1–533Google Scholar
  6. Bouhours J, Lewis MA (2016) Climate change and integrodifference equations in a stochastic environment. Bull Math Biol 78(9):1866–1903CrossRefPubMedGoogle Scholar
  7. Byers JE, Pringle JM (2006) Going against the flow: retention, range limits and invasions in advective environments. Mar Ecol Prog Ser 313:27–41CrossRefGoogle Scholar
  8. Caswell H (2001) Matrix population models, 2nd Edition. Sinauer, SunderlandGoogle Scholar
  9. Caswell H (2007) Sensitivity analysis of transient population dynamics. Ecol Lett 10(1):1–15CrossRefPubMedGoogle Scholar
  10. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026CrossRefPubMedGoogle Scholar
  11. Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA, Lewis M, Lynch J, Pacala S, Prentice C et al (1998) Reid’s paradox of rapid plant migration dispersal theory and interpretation of paleoecological records. BioScience 48(1):13–24CrossRefGoogle Scholar
  12. Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80(5):1475–1494CrossRefGoogle Scholar
  13. Cobbold C, Lewis M, Lutscher F, Roland J (2005) How parasitism affects critical patch-size in a host–parasitoid model: application to the forest tent caterpillar. Theor Popul Biol 67(2):109–125CrossRefPubMedGoogle Scholar
  14. Fagan WF, Lutscher F (2006) Average dispersal success: linking home range, dispersal, and metapopulation dynamics to reserve design. Ecol Appl 16(2):820–828CrossRefPubMedGoogle Scholar
  15. Hance T, Van Baaren J, Vernon P, Boivin G (2006) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52(1):107CrossRefGoogle Scholar
  16. Harrington R, Woiwod I, Sparks T (1999) Climate change and trophic interactions. Trends Ecol Evol 14(4):146–150CrossRefPubMedGoogle Scholar
  17. Harsch MA, Zhou Y, HilleRisLambers J, Kot M (2014) Keeping pace with climate change: stage-structured moving-habitat models. Am Nat 184(1):25–37CrossRefPubMedGoogle Scholar
  18. Hughes JS, Cobbold CA, Haynes K, Dwyer G (2015) Effects of forest spatial structure on insect outbreaks: insights from a host-parasitoid model. Am Nat 185(5):E130–E152CrossRefPubMedGoogle Scholar
  19. Kolotilina LY (1993) Lower bounds for the Perron root of a nonnegative matrix. Linear Algebra Appl 180:133–151CrossRefGoogle Scholar
  20. Kot M, Phillips A (2015) Bounds for the critical speed of climate-driven moving-habitat models. Math Biosci 262:65–72CrossRefPubMedGoogle Scholar
  21. Kot M, Schaffer WM (1986) Discrete-time growth-dispersal models. Math Biosci 80(1):109–136CrossRefGoogle Scholar
  22. Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77(7):2027–2042CrossRefGoogle Scholar
  23. Kot M, Medlock J, Reluga T, Walton DB (2004) Stochasticity, invasions, and branching random walks. Theor Popul Biol 66(3):175–184CrossRefPubMedGoogle Scholar
  24. Leslie PH (1945) On the use of matrices in certain population mathematics. Biometrika 33(3):183–212CrossRefPubMedGoogle Scholar
  25. Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perspective. Ann Rev Ecol Evol Syst 34(1):575–604CrossRefGoogle Scholar
  26. Lutscher F, Lewis MA (2004) Spatially-explicit matrix models. J Math Biol 48(3):293–324CrossRefPubMedGoogle Scholar
  27. Lutscher F, Pachepsky E, Lewis MA (2005) The effect of dispersal patterns on stream populations. Siam Rev 47(4):749–772CrossRefGoogle Scholar
  28. Lutscher F, Nisbet RM, Pachepsky E (2010) Population persistence in the face of advection. Theor Ecol 3(4):271–284CrossRefGoogle Scholar
  29. May RM, Oster GF (1976) Bifurcations and dynamic complexity in simple ecological models. Am Nat 110(974):573–599CrossRefGoogle Scholar
  30. Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15(7):278–285CrossRefPubMedGoogle Scholar
  31. Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103(2):261–273CrossRefGoogle Scholar
  32. Phillips A, Kot M (2015) Persistence in a two-dimensional moving-habitat model. Bull Math Biol 77 (11):2125–2159CrossRefPubMedGoogle Scholar
  33. Potapov A, Lewis M (2004) Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull Math Biol 66(5):975–1008CrossRefPubMedGoogle Scholar
  34. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  35. Rahmandad H, Sterman J (2008) Heterogeneity and network structure in the dynamics of diffusion: comparing agent-based and differential equation models. Manag Sci 54(5):998–1014CrossRefGoogle Scholar
  36. Reimer JR, Bonsall MB, Maini PK (2016) Approximating the critical domain size of integrodifference equations. Bull Math Biol 78(1):72–109CrossRefPubMedGoogle Scholar
  37. Ricker WE (1954) Stock and recruitment. J Fish Board Canada 11(5):559–623CrossRefGoogle Scholar
  38. Rieux A, Soubeyrand S, Bonnot F, Klein EK, Ngando JE, Mehl A, Ravigne V, Carlier J, de Bellaire LdL (2014) Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment. PLOS ONE 9(8):e103,225CrossRefGoogle Scholar
  39. Rodríguez MA (2010) A modeling framework for assessing long-distance dispersal and loss of connectivity in stream fish. In: Community ecology of stream fishes: concepts, approaches, and techniques, vol 73. American Fisheries Society, Symposium, Bethesda, pp 263–279Google Scholar
  40. Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88 (424):1273–1283CrossRefGoogle Scholar
  41. Schloss CA, Nuñez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci 109(22):8606–8611CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schwenk AJ (1986) Tight bounds on the spectral radius of asymmetric nonnegative matrices. Linear Algebra Appl 75:257–265CrossRefGoogle Scholar
  43. Snyder RE (2003) How demographic stochasticity can slow biological invasions. Ecology 84(5):1333–1339CrossRefGoogle Scholar
  44. Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11(2):173–181CrossRefGoogle Scholar
  45. Van Kirk RW, Lewis MA (1997) Integrodifference models for persistence in fragmented habitats. Bull Math Biol 59(1):107–137CrossRefGoogle Scholar
  46. Vasilyeva O, Lutscher F, Lewis M (2016) Analysis of spread and persistence for stream insects with winged adult stages. J Math Biol 72(4):851–875CrossRefPubMedGoogle Scholar
  47. Veit RR, Lewis MA (1996) Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America. Am Nat 148(2):255–274CrossRefGoogle Scholar
  48. Vuilleumier S, Possingham HP (2006) Does colonization asymmetry matter in metapopulations? Proc R Soc London B: Biol Sci 273(1594):1637–1642CrossRefGoogle Scholar
  49. Wang MH, Kot M, Neubert MG (2002) Integrodifference equations, Allee effects, and invasions. J Math Biol 44(2):150–168CrossRefPubMedGoogle Scholar
  50. Werth S, Wagner HH, Gugerli F, Holderegger R, Csencsics D, Kalwij JM, Scheidegger C (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87(8):2037–2046CrossRefPubMedGoogle Scholar
  51. Willson M (1993) Dispersal mode, seed shadows, and colonization patterns. Vegetatio 107/108: 261–280Google Scholar
  52. Willson MF, Traveset A (2000) The ecology of seed dispersal. Seeds: Ecol Regen Plant Commun 2:85–110Google Scholar
  53. Zabreyko P, Koshelev A, Krasnoselskii M, Mikhlin S, Rakovshchik L, Stetsenko VY (2013) Integral equations: a reference text. Springer, BerlinGoogle Scholar
  54. Zhou Y, Kot M (2011) Discrete-time growth-dispersal models with shifting species ranges. Theor Ecol 4 (1):13–25CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Quantitative Ecology and Resource ManagementUniversity of WashingtonSeattleUSA

Personalised recommendations