Journal of Cell Communication and Signaling

, Volume 13, Issue 1, pp 121–127 | Cite as

A network map of netrin receptor UNC5B-mediated signaling

  • Sameer Ahmed Bhat
  • Sumrati Gurtoo
  • Sayali Chandrashekhar Deolankar
  • Khalid Majid Fazili
  • Jayshree Advani
  • Rohan Shetty
  • T. S. Keshava Prasad
  • Shaida AndrabiEmail author
  • Yashwanth SubbannayyaEmail author
Nuts and Bolts


UNC-5 Homolog B (UNC5B) is a member of the dependence receptor family. This family of receptors can induce two opposite intracellular signaling cascades depending on the presence or absence of the ligand and is thus capable of driving two opposing processes. UNC5B signaling has been implicated in several cancers, where it induces cell death in the absence of its ligand Netrin-1 and promotes cell survival in its presence. In addition, inhibition of Netrin-1 ligand has been reported to decrease invasiveness and angiogenesis in tumors. UNC5B signaling pathway has also been reported to be involved in several processes such as neural development, developmental angiogenesis and inflammatory processes. However, literature pertaining to UNC5B signaling is scarce and scattered. Considering the importance of UNC5B signaling, we developed a resource of signaling events mediated by UNC5B. Using data mined from published literature, we compiled an integrated pathway map consisting of 88 UNC5B-mediated signaling events and 55 proteins. These signaling events include 27 protein-protein interaction events, 33 catalytic events involving various post-translational modifications, 9 events of UNC5B-mediated protein activation/inhibition, 27 gene regulation events and 2 events of translocation. This pathway resource has been made available to the research community through NetPath (, a manually curated resource of signaling pathways (Database URL: The current resource provides a foundation for the understanding of UNC5B-mediated cellular responses. The development of resource will serve researchers to explore the mechanisms of UNC-5B signaling in cancers.


Carcinoma Tumorigenesis Netrin signaling pathway Gene set enrichment Molecular association Dependence receptors 



UNC5 netrin receptor B


Protein Phosphate 2A




Thrombospondin domain


Deleted in colorectal cancer


Death-associated protein kinase


Immunoglobulin Domain


Death Domain


Protein-protein interaction


Post-translational modification



The work was supported by DST INSPIRE fellowship to Sameer Ahmed Bhat. We also thank Karnataka Biotechnology and Information Technology Services (KBITS), Government of Karnataka for the support to the Center for Systems Biology and Molecular Medicine at Yenepoya (Deemed to be University) under the Biotechnology Skill Enhancement Programme (BiSEP) in Multiomics Technology. We also thank the Department of Biotechnology, Government of India, for giving support to Dr. Shaida Andrabi through Ramalingaswami Fellowship.

Compliance with ethical standards

Declaration of interest

The authors report no declarations of interest.


  1. An XZ, Zhao ZG, Luo YX, Zhang R, Tang XQ, Hao D, Zhao X, Lv X, Liu D (2016) Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget 7:24719–24733Google Scholar
  2. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370CrossRefGoogle Scholar
  3. Brown GR, Hem V, Katz KS, Ovetsky M, Wallin C, Ermolaeva O, Tolstoy I, Tatusova T, Pruitt KD, Maglott DR, Murphy TD (2015) Gene: a gene-centered information resource at NCBI. Nucleic Acids Res 43:D36–D42CrossRefGoogle Scholar
  4. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur O, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Ruebenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novere N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942CrossRefGoogle Scholar
  5. Goldschneider D, Mehlen P (2010) Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene 29:1865–1882CrossRefGoogle Scholar
  6. Graef IA, Wang F, Charron F, Chen L, Neilson J, Tessier-Lavigne M, Crabtree GR (2003) Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113:657–670CrossRefGoogle Scholar
  7. Guenebeaud C, Goldschneider D, Castets M, Guix C, Chazot G, Delloye-Bourgeois C, Eisenberg-Lerner A, Shohat G, Zhang M, Laudet V, Kimchi A, Bernet A, Mehlen P (2010) The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol Cell 40:863–876CrossRefGoogle Scholar
  8. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517CrossRefGoogle Scholar
  9. Hayano Y, Sasaki K, Ohmura N, Takemoto M, Maeda Y, Yamashita T, Hata Y, Kitada K, Yamamoto N (2014) Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion. Proc Natl Acad Sci U S A 111:15226–15231CrossRefGoogle Scholar
  10. He K, Jang SW, Joshi J, Yoo MH, Ye K (2011) Akt-phosphorylated PIKE-A inhibits UNC5B-induced apoptosis in cancer cell lines in a p53-dependent manner. Mol Biol Cell 22:1943–1954CrossRefGoogle Scholar
  11. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U, von Mering C, Roechert B, Poux S, Jung E, Mersch H, Kersey P, Lappe M, Li Y, Zeng R, Rana D, Nikolski M, Husi H, Brun C, Shanker K, Grant SG, Sander C, Bork P, Zhu W, Pandey A, Brazma A, Jacq B, Vidal M, Sherman D, Legrain P, Cesareni G, Xenarios I, Eisenberg D, Steipe B, Hogue C, Apweiler R (2004) The HUPO PSI's molecular interaction format--a community standard for the representation of protein interaction data. Nat Biotechnol 22:177–183CrossRefGoogle Scholar
  12. Hu X, Liu Y, Zhang M, Wang Y, Lv L, Zhang X, Zhang P, Zhou Y (2018) UNC-5 netrin receptor B mediates osteogenic differentiation by modulating bone morphogenetic protein signaling in human adipose-derived stem cells. Biochem Biophys Res Commun 495:1167–1174CrossRefGoogle Scholar
  13. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531CrossRefGoogle Scholar
  14. Kandasamy K, Keerthikumar S, Raju R, Keshava Prasad TS, Ramachandra YL, Mohan S, Pandey A (2009) PathBuilder--open source software for annotating and developing pathway resources. Bioinformatics 25:2860–2862CrossRefGoogle Scholar
  15. Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, Gollapudi SK, Tattikota SG, Mohan S, Padhukasahasram H, Subbannayya Y, Goel R, Jacob HK, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R, Ramachandra YL, Rahiman BA, Prasad TS, Lin JX, Houtman JC, Desiderio S, Renauld JC, Constantinescu SN, Ohara O, Hirano T, Kubo M, Singh S, Khatri P, Draghici S, Bader GD, Sander C, Leonard WJ, Pandey A (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3CrossRefGoogle Scholar
  16. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database--2009 update. Nucleic Acids Res 37:D767–D772CrossRefGoogle Scholar
  17. Koch AW, Mathivet T, Larrivee B, Tong RK, Kowalski J, Pibouin-Fragner L, Bouvree K, Stawicki S, Nicholes K, Rathore N, Scales SJ, Luis E, del Toro R, Freitas C, Breant C, Michaud A, Corvol P, Thomas JL, Wu Y, Peale F, Watts RJ, Tessier-Lavigne M, Bagri A, Eichmann A (2011) Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 20:33–46CrossRefGoogle Scholar
  18. Kong C, Zhan B, Piao C, Zhang Z, Zhu Y, Li Q (2016) Overexpression of UNC5B in bladder cancer cells inhibits proliferation and reduces the volume of transplantation tumors in nude mice. BMC Cancer 16:892CrossRefGoogle Scholar
  19. Larrivee B, Freitas C, Trombe M, Lv X, Delafarge B, Yuan L, Bouvree K, Breant C, Del Toro R, Brechot N, Germain S, Bono F, Dol F, Claes F, Fischer C, Autiero M, Thomas JL, Carmeliet P, Tessier-Lavigne M, Eichmann A (2007) Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev 21:2433–2447CrossRefGoogle Scholar
  20. Lejmi E, Bouras I, Camelo S, Roumieux M, Minet N, Lere-Dean C, Merkulova-Rainon T, Autret G, Vayssettes C, Clement O, Plouet J, Leconte L (2014) Netrin-4 promotes mural cell adhesion and recruitment to endothelial cells. Vasc Cell 6:1CrossRefGoogle Scholar
  21. Liu J, Zhang Z, Li ZH, Kong CZ (2013) Clinical significance of UNC5B expression in bladder cancer. Tumour Biol 34:2099–2108CrossRefGoogle Scholar
  22. Llambi F, Causeret F, Bloch-Gallego E, Mehlen P (2001) Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J 20:2715–2722CrossRefGoogle Scholar
  23. Llambi F, Lourenco FC, Gozuacik D, Guix C, Pays L, Del Rio G, Kimchi A, Mehlen P (2005) The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J 24:1192–1201CrossRefGoogle Scholar
  24. Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, Breant C, Claes F, De Smet F, Thomas JL, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A (2004) The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432:179–186CrossRefGoogle Scholar
  25. Lv J, Sun X, Ma J, Ma X, Zhang Y, Li F, Li Y, Zhao Z (2015) Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor. Biochem Biophys Res Commun 464:263–268CrossRefGoogle Scholar
  26. Maglott D, Ostell J, Pruitt KD, Tatusova T (2011) Entrez gene: gene-centered information at NCBI. Nucleic Acids Res 39:D52–D57CrossRefGoogle Scholar
  27. Mediero A, Ramkhelawon B, Perez-Aso M, Moore KJ, Cronstein BN (2015) Netrin-1 is a critical autocrine/paracrine factor for osteoclast differentiation. J Bone Miner Res 30:837–854CrossRefGoogle Scholar
  28. Mehlen P, Guenebeaud C (2010) Netrin-1 and its dependence receptors as original targets for cancer therapy. Curr Opin Oncol 22:46–54CrossRefGoogle Scholar
  29. Paradisi A, Creveaux M, Gibert B, Devailly G, Redoulez E, Neves D, Cleyssac E, Treilleux I, Klein C, Niederfellner G, Cassier PA, Bernet A, Mehlen P (2013) Combining chemotherapeutic agents and netrin-1 interference potentiates cancer cell death. EMBO Mol Med 5:1821–1834CrossRefGoogle Scholar
  30. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887CrossRefGoogle Scholar
  31. Prasad TS, Kandasamy K, Pandey A (2009) Human protein reference database and human Proteinpedia as discovery tools for systems biology. Methods Mol Biol 577:67–79CrossRefGoogle Scholar
  32. Qi Q, Li DY, Luo HR, Guan KL, Ye K (2015) Netrin-1 exerts oncogenic activities through enhancing yes-associated protein stability. Proc Natl Acad Sci U S A 112:7255–7260CrossRefGoogle Scholar
  33. Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, Kurian Thomas J, Sharma J, Rahiman BA, Harsha HC, Shankar S, Prasad TS, Mohan SS, Bader GD, Wani MR, Pandey A (2011) A comprehensive manually curated reaction map of RANKL/RANK-signaling pathway. Database (Oxford) 2011:bar021Google Scholar
  34. Ramkhelawon B, Hennessy EJ, Menager M, Ray TD, Sheedy FJ, Hutchison S, Wanschel A, Oldebeken S, Geoffrion M, Spiro W, Miller G, McPherson R, Rayner KJ, Moore KJ (2014) Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat Med 20:377–384CrossRefGoogle Scholar
  35. Sanvoranart T, Supokawej A, Kheolamai P, UP Y, Poungvarin N, Sathornsumetee S, Issaragrisil S (2016) Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis. Tumour Biol 37:14949–14960CrossRefGoogle Scholar
  36. Sato T, Kokabu S, Enoki Y, Hayashi N, Matsumoto M, Nakahira M, Sugasawa M, Yoda T (2017) Functional roles of Netrin-1 in osteoblast differentiation. In Vivo 31:321–328CrossRefGoogle Scholar
  37. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. Elegans UNC-6. Cell 78:409–424CrossRefGoogle Scholar
  38. Shimizu A, Nakayama H, Wang P, Konig C, Akino T, Sandlund J, Coma S, Italiano JE Jr, Mammoto A, Bielenberg DR, Klagsbrun M (2013) Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of RhoA, cathepsin B, and cAMP-response element-binding protein. J Biol Chem 288:2210–2222CrossRefGoogle Scholar
  39. Soman S, Raju R, Sandhya VK, Advani J, Khan AA, Harsha HC, Prasad TS, Sudhakaran PR, Pandey A, Adishesha PK (2013) A multicellular signal transduction network of AGE/RAGE signaling. J Cell Commun Signal 7:19–23CrossRefGoogle Scholar
  40. Subbannayya Y, Anuja K, Advani J, Ojha UK, Nanjappa V, George B, Sonawane A, Kumar RV, Ramaswamy G, Pandey A, Somani BL, Raju R (2014) A network map of the gastrin signaling pathway. J Cell Commun Signal 8:165–170CrossRefGoogle Scholar
  41. Tadagavadi RK, Wang W, Ramesh G (2010) Netrin-1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury. J Immunol 185:3750–3758CrossRefGoogle Scholar
  42. Tang X, Jang SW, Okada M, Chan CB, Feng Y, Liu Y, Luo SW, Hong Y, Rama N, Xiong WC, Mehlen P, Ye K (2008) Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC5B. Nat Cell Biol 10:698–706CrossRefGoogle Scholar
  43. Tanikawa C, Matsuda K, Fukuda S, Nakamura Y, Arakawa H (2003) p53RDL1 regulates p53-dependent apoptosis. Nat Cell Biol 5:216–223CrossRefGoogle Scholar
  44. Thiebault K, Mazelin L, Pays L, Llambi F, Joly MO, Scoazec JY, Saurin JC, Romeo G, Mehlen P (2003) The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment. Proc Natl Acad Sci U S A 100:4173–4178CrossRefGoogle Scholar
  45. van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399CrossRefGoogle Scholar
  46. Wang H, Copeland NG, Gilbert DJ, Jenkins NA, Tessier-Lavigne M (1999) Netrin-3, a mouse homolog of human NTN2L, is highly expressed in sensory ganglia and shows differential binding to netrin receptors. J Neurosci 19:4938–4947CrossRefGoogle Scholar
  47. Wang W, Reeves WB, Ramesh G (2008) Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney. Am J Physiol Renal Physiol 294:F739–F747CrossRefGoogle Scholar
  48. Wang R, Wei Z, Jin H, Wu H, Yu C, Wen W, Chan LN, Wen Z, Zhang M (2009) Autoinhibition of UNC5b revealed by the cytoplasmic domain structure of the receptor. Mol Cell 33:692–703CrossRefGoogle Scholar
  49. Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F, Urness LD, Suh W, Asai J, Kock GA, Thorne T, Silver M, Thomas KR, Chien CB, Losordo DW, Li DY (2006) Netrins promote developmental and therapeutic angiogenesis. Science 313:640–644CrossRefGoogle Scholar

Copyright information

© The International CCN Society 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity of KashmirSrinagarIndia
  2. 2.Center for Systems Biology and Molecular MedicineYenepoya (Deemed to be University)MangaloreIndia
  3. 3.Institute of BioinformaticsBangaloreIndia
  4. 4.Manipal Academy of Higher EducationManipalIndia
  5. 5.Department of Surgical Oncology. Yenepoya Medical CollegeYenepoya (Deemed to be University)MangaloreIndia
  6. 6.Department of BiochemistryUniversity of KashmirSrinagarIndia

Personalised recommendations