Advertisement

Immunohistochemistry analysis of Pygo2 expression in central nervous system tumors

  • Yi Liang
  • Chaoxi Wang
  • Apeng Chen
  • Lei Zhu
  • Jie Zhang
  • Pucha Jiang
  • Qiaoxin Yue
  • Gejing DeEmail author
Research Article

Abstract

Pygo2 as a Wnt signaling pathway component has been detected in multiple cancer types. In this study, we identified Pygo2 expression features by immunohistochemistry in 73 central nervous system tumor specimens, in comparison with 14 normal brain tissues and surrounding non-tumorous tissues of tumor. Our study indicated that 59% of the patient tumor specimens exhibited positive Pygo2-staining and increases intensity with the grade of malignancy, especially for WHO grade III and IV gliomas, was observed high level expression, compared with normal brain tissues. Five out of nine WHO grade III anaplastic astrocytomas and seven out of nine WHO grade IV glioblastomas showed Pygo2-positive staining. The analysis of Pygo2 gene expression by quantitative real-time PCR of additional ten fresh patient samples yielded similar results. Further studies performed with stable cell lines in vitro demonstrated that Pygo2 render cells higher proliferation rate, migration and anchorage-independent colony-forming ability in soft agar. Taken together, our studies suggest an important role of Pygo2 in brain tumor progression.

Keywords

Pygo2 Gliomas Immunohistochemistry Glioblastomas 

Abbreviations

TCF

T cell factor

LEF

Lymphoid enhancer binding factor

PBS

Phosphate-buffered saline

PHD finger

Plant homeodomain finger

Notes

Acknowledgments

This research was supported by The National Natural Science Foundation of China (Grant No. 31501126). We thank Chao Ma, Heng Wei, and Feng Chen for supplying samples and medical assistance.

Supplementary material

12079_2018_476_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 17 kb)
12079_2018_476_Fig5_ESM.png (52 kb)
figure S1

(PNG 52 kb)

12079_2018_476_MOESM2_ESM.eps (1.2 mb)
High Resolution (EPS 1246 kb)

References

  1. Andrews PG, Lake BB, Popadiuk C, Kao KR (2007) Requirement of Pygopus 2 in breast cancer. Int J Oncol 30:357–363Google Scholar
  2. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331CrossRefGoogle Scholar
  3. Blagodatski A, Poteryaev D, Katanaev VL (2014) Targeting the Wnt pathways for therapies. Mol Cell Ther 2:28CrossRefPubMedCentralGoogle Scholar
  4. Buckner JC, Brown PD, O'Neill BP, Meyer FB, Wetmore CJ, Uhm JH (2007) Central nervous system tumors. Mayo Clin Proc 82:1271–1286CrossRefGoogle Scholar
  5. Cadigan KM (2002) Wnt signaling--20 years and counting. Trends Genet 18:340–342CrossRefGoogle Scholar
  6. De D, Chen A, Wu Z, Lv S, He G, Qi Y (2009) Overexpression of Pygopus2 protects HeLa cells from vinblastine-induced apoptosis. Biol Chem 390:157–165CrossRefGoogle Scholar
  7. Dell’Albani P (2008) Stem cell markers in gliomas. Neurochem Res 33:2407–2415CrossRefGoogle Scholar
  8. Fathi AR, Roelcke U (2013) Meningioma. Curr Neurol Neurosci Rep 13:337CrossRefGoogle Scholar
  9. Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL (2007) Epidemiology of brain tumors. Neurol. Clin. 25:867–890 viiCrossRefGoogle Scholar
  10. Jessen S, Gu B, Dai X (2008) Pygopus and the Wnt signaling pathway: a diverse set of connections. Bioessays 30:448–456CrossRefGoogle Scholar
  11. Kao KR, Popadiuk P, Thoms J, Aoki S, Anwar S, Fitzgerald E, Andrews P, Voisey K, Gai L, Challa S et al (2018) PYGOPUS2 expression in prostatic adenocarcinoma is a potential risk stratification marker for PSA progression following radical prostatectomy. J Clin Pathol 71:402–411CrossRefGoogle Scholar
  12. Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Zullig S, Basler K (2002) Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 109:47–60CrossRefGoogle Scholar
  13. Lake BB, Kao KR (2003) Pygopus is required for embryonic brain patterning in Xenopus. Dev Biol 261:132–148CrossRefGoogle Scholar
  14. Lee Y, Lee JK, Ahn SH, Lee J, Nam DH (2016) WNT signaling in glioblastoma and therapeutic opportunities. Lab Investig 96:137–150CrossRefGoogle Scholar
  15. Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D et al (2013a) Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proc Natl Acad Sci U S A 110:20224–20229CrossRefPubMedCentralGoogle Scholar
  16. Liu Y, Dong QZ, Wang S, Fang CQ, Miao Y, Wang L, Li MZ, Wang EH (2013b) Abnormal expression of Pygopus 2 correlates with a malignant phenotype in human lung cancer. BMC Cancer 13:346CrossRefPubMedCentralGoogle Scholar
  17. Longstreth WT Jr, Dennis LK, McGuire VM, Drangsholt MT, Koepsell TD (1993) Epidemiology of intracranial meningioma. Cancer 72:639–648CrossRefGoogle Scholar
  18. Louis DN, Holland EC, Cairncross JG (2001) Glioma classification: a molecular reappraisal. Am J Pathol 159:779–786CrossRefPubMedCentralGoogle Scholar
  19. McCord M, Mukouyama YS, Gilbert MR, Jackson S (2017) Targeting WNT signaling for multifaceted glioblastoma therapy. Front Cell Neurosci 11:318CrossRefPubMedCentralGoogle Scholar
  20. Moghbeli M, Abbaszadegan MR, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, Forghanifard MM (2013) Association of PYGO2 and EGFR in esophageal squamous cell carcinoma. Med Oncol 30:516CrossRefGoogle Scholar
  21. Nakamura Y, Umehara T, Hamana H, Hayashizaki Y, Inoue M, Kigawa T, Shirouzu M, Terada T, Tanaka A, Padmanabhan B, Yokoyama S (2007) Crystal structure analysis of the PHD domain of the transcription co-activator Pygopus. J Mol Biol 370:80–92CrossRefGoogle Scholar
  22. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108CrossRefGoogle Scholar
  23. Popadiuk CM, Xiong J, Wells MG, Andrews PG, Dankwa K, Hirasawa K, Lake BB, Kao KR (2006) Antisense suppression of pygopus2 results in growth arrest of epithelial ovarian cancer. Clin Cancer Res 12:2216–2223CrossRefGoogle Scholar
  24. Schwab KR, Patterson LT, Hartman HA, Song N, Lang RA, Lin X, Potter SS (2007) Pygo1 and Pygo2 roles in Wnt signaling in mammalian kidney development. BMC Biol 5:15CrossRefPubMedCentralGoogle Scholar
  25. Stadeli R, Basler K (2005) Dissecting nuclear wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins. Mech Dev 122:1171–1182CrossRefGoogle Scholar
  26. Sun P, Watanabe K, Fallahi M, Lee B, Afetian ME, Rheaume C, Wu D, Horsley V, Dai X (2014) Pygo2 regulates beta-catenin-induced activation of hair follicle stem/progenitor cells and skin hyperplasia. Proc Natl Acad Sci U S A 111:10215–10220CrossRefPubMedCentralGoogle Scholar
  27. Taipale J, Beachy PA (2001) The hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354CrossRefGoogle Scholar
  28. Townsley FM, Thompson B, Bienz M (2004) Pygopus residues required for its binding to legless are critical for transcription and development. J Biol Chem 279:5177–5183CrossRefGoogle Scholar
  29. Wang ZX, Chen YY, Li BA, Tan GW, Liu XY, Shen SH, Zhu HW, Wang HD (2010) Decreased pygopus 2 expression suppresses glioblastoma U251 cell growth. J Neuro-Oncol 100:31–41CrossRefGoogle Scholar
  30. Wang H, Fu J, Xu D, Xu W, Wang S, Zhang L, Xiang Y (2016) Downregulation of Pygopus 2 inhibits vascular mimicry in glioma U251 cells by suppressing the canonical Wnt signaling pathway. Oncol Lett 11:678–684CrossRefGoogle Scholar
  31. Watanabe K, Fallahi M, Dai X (2014) Chromatin effector Pygo2 regulates mammary tumor initiation and heterogeneity in MMTV-Wnt1 mice. Oncogene 33:632–642CrossRefGoogle Scholar
  32. Wiemels J, Wrensch M, Claus EB (2010) Epidemiology and etiology of meningioma. J Neuro-Oncol 99:307–314CrossRefGoogle Scholar

Copyright information

© The International CCN Society 2018

Authors and Affiliations

  1. 1.Laboratory Medicine CollegeGuangdong Medical UniversityGuangdongPeople’s Republic of China
  2. 2.Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghUSA
  3. 3.State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  4. 4.Department of NeurosurgeryZhongnan Hospital of Wuhan UniversityWuhanPeople’s Republic of China
  5. 5.Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingPeople’s Republic of China

Personalised recommendations