Skip to main content
Log in

Blockade of Bradykinin receptors worsens the dystrophic phenotype of mdx mice: differential effects for B1 and B2 receptors

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The Kallikrein Kinin System (KKS) is a vasoactive peptide system with known functions in the maintenance of tissue homeostasis, renal function and blood pressure. The main effector peptide of KKS is Bradykinin (BK). This ligand has two receptors: a constitutive B2 receptor (B2R), which has been suggested to have anti-fibrotic effects in renal and cardiac models of fibrosis; and the inducible B1 receptor (B1R), whose expression is induced by damage and inflammation. Inflammation and fibrosis are hallmarks of Duchenne muscular dystrophy (DMD), therefore we hypothesized that the KKS may play a role in this disease. To evaluate this hypothesis we used the mdx mouse a model for DMD. We blocked the endogenous activity of the KKS by treating mdx mice with B2R antagonist (HOE-140) or B1R antagonist (DesArgLeu8BK (DALBK)) for four weeks. Both antagonists increased damage, fibrosis, TGF-β and Smad-dependent signaling, CTGF/CCN-2 levels as well as the number of CD68 positive inflammatory cells. B2R blockade also reduced isolated muscle contraction force. These results indicate that the endogenous KKS has a protective role in the dystrophic muscle. The KKS may be a new target for future therapies to reduce inflammation and fibrosis in dystrophic muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Bradykinin receptor blockade increases damage and fibrosis in mdx muscle
Fig. 2: Bradykinin receptor blockade increases TGF-β and phospho-Smad3 positive cells
Fig. 3: Bradykinin receptor blockade increases CTGF/CCN2 mRNA and protein levels
Fig. 4: Bradykinin receptor blockade increases inflammatory CD68+ cells and tnf-α mRNA levels inmdx muscle
Fig. 5: B2R blockade reduces strength in diaphragm and tibial anterior muscle of mdx mice
Fig. 6

Similar content being viewed by others

Abbreviations

Ang-II:

Angiotensin-II

Ang-(1–7):

Angiotensin-(1–7)

ACE:

Angiotensin converting enzyme

AT1:

Angiotensin receptor 1

BK:

Bradykinin

B1R:

Bradykinin Receptor 1

B2R:

Bradykinin Receptor 2

CTGF/CCN-2:

Connective tissue growth factor

DALBK:

DesArg9Leu8-Bradykinin

DMD:

Duchenne muscular dystrophy

ECM:

Extracellular matrix

KKS:

Kallikrein kinin system

LTBP:

Latent TGF-β-binding protein

RAS:

Renin Angiotensin system

TGF-β:

Transforming growth factor type-β

TNF-α:

Tumor necrosis factor alpha

References

  • Acharyya S, Villalta SA, Bakkar N, Bupha-Intr T, Janssen PM, Carathers M, Li ZW, Beg AA, Ghosh S, Sahenk Z, Weinstein M, Gardner KL, Rafael-Fortney JA, Karin M, Tidball JG, Baldwin AS, Guttridge DC (2007) Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 117:889–901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Acuña MJ, Brandan E (2017) Analysis of pathological activities of CCN2/CTGF in muscle dystrophy. Methods Mol Biol 1489:513–521

    Article  PubMed  CAS  Google Scholar 

  • Acuña MJ, Pessina P, Olguin H, Cabrera D, Vio CP, Bader M, Munoz-Canoves P, Santos RA, Cabello-Verrugio C, Brandan E (2014) Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-beta signalling. Hum Mol Genet 23:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi P, Di Blasi C, Mora M, Morandi L, Galbiati S, Confalonieri P, Cornelio F, Mantegazza R (1999) Transforming growth factor-beta1 and fibrosis in congenital muscular dystrophies. Neuromuscul Disord 9:28–33

    Article  PubMed  CAS  Google Scholar 

  • Bhoola KD, Figueroa CD, Worthy K (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44:1–80

    PubMed  CAS  Google Scholar 

  • Bledsoe G, Shen B, Yao YY, Hagiwara M, Mizell B, Teuton M, Grass D, Chao L, Chao J (2008) Role of tissue kallikrein in prevention and recovery of gentamicin-induced renal injury. Toxicol Sci 102:433–443

    Article  PubMed  CAS  Google Scholar 

  • Brandan E, Cabello-Verrugio C, Vial C (2008) Novel regulatory mechanisms for the proteoglycans decorin and biglycan during muscle formation and muscular dystrophy. Matrix Biol 27:700–708

    Article  PubMed  CAS  Google Scholar 

  • Cabello-Verrugio C, Morales MG, Cabrera D, Vio CP, Brandan E (2012) Angiotensin II receptor type 1 blockade decreases CTGF/CCN2-mediated damage and fibrosis in normal and dystrophic skeletal muscles. J Cell Mol Med 16:752–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cabrera D, Gutierrez J, Cabello-Verrugio C, Morales MG, Mezzano S, Fadic R, Casar JC, Hancke JL, Brandan E (2014) Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis. Skelet Muscle 4:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardenas A, Campos J, Ehrenfeld P, Mezzano S, Ruiz-Ortega M, Figueroa CD, Ardiles L (2015) Up-regulation of the kinin B2 receptor pathway modulates the TGF-beta/Smad signaling cascade to reduce renal fibrosis induced by albumin. Peptides 73:7–19

    Article  PubMed  CAS  Google Scholar 

  • Carvajal G, Rodriguez-Vita J, Rodrigues-Diez R, Sanchez-Lopez E, Ruperez M, Cartier C, Esteban V, Ortiz A, Egido J, Mezzano SA, Ruiz-Ortega M (2008) Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int 74:585–595

    Article  PubMed  CAS  Google Scholar 

  • Chao J, Li HJ, Yao YY, Shen B, Gao L, Bledsoe G, Chao L (2007) Kinin infusion prevents renal inflammation, apoptosis, and fibrosis via inhibition of oxidative stress and mitogen-activated protein kinase activity. Hypertension 49:490–497

    Article  PubMed  CAS  Google Scholar 

  • Chao J, Shen B, Gao L, Xia CF, Bledsoe G, Chao L (2010) Tissue kallikrein in cardiovascular, cerebrovascular and renal diseases and skin wound healing. Biol Chem 391:345–355

    Article  PubMed  CAS  Google Scholar 

  • Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC, Lisi MT, Gamradt M, ap Rhys CM, Holm TM, Loeys BL, Ramirez F, Judge DP, Ward CW, Dietz HC (2007) Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13:204–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cozzoli A, Nico B, Sblendorio VT, Capogrosso RF, Dinardo MM, Longo V, Gagliardi S, Montagnani M, De Luca A (2011) Enalapril treatment discloses an early role of angiotensin II in inflammation- and oxidative stress-related muscle damage in dystrophic mdx mice. Pharmacol Res 64:482–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies KE, Nowak KJ (2006) Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7:762–773

    Article  PubMed  CAS  Google Scholar 

  • Dietze GJ, Wicklmayr M, Rett K, Jacob S, Henriksen EJ (1996) Potential role of bradykinin in forearm muscle metabolism in humans. Diabetes 45(Suppl 1):S110–S114

    Article  PubMed  Google Scholar 

  • Duchene J, Ahluwalia A (2009) The kinin B(1) receptor and inflammation: new therapeutic target for cardiovascular disease. Curr Opin Pharmacol 9:125–131

    Article  PubMed  CAS  Google Scholar 

  • Emanueli C, Maestri R, Corradi D, Marchione R, Minasi A, Tozzi MG, Salis MB, Straino S, Capogrossi MC, Olivetti G, Madeddu P (1999) Dilated and failing cardiomyopathy in bradykinin B(2) receptor knockout mice. Circulation 100:2359–2365

    Article  PubMed  CAS  Google Scholar 

  • Emanueli C, Zacheo A, Minasi A, Chao J, Chao L, Salis MB, Stacca T, Straino S, Capogrossi MC, Madeddu P (2000) Adenovirus-mediated human tissue kallikrein gene delivery induces angiogenesis in normoperfused skeletal muscle. Arterioscler Thromb Vasc Biol 20:2379–2385

    Article  PubMed  CAS  Google Scholar 

  • Emanueli C, Minasi A, Zacheo A, Chao J, Chao L, Salis MB, Straino S, Tozzi MG, Smith R, Gaspa L, Bianchini G, Stillo F, Capogrossi MC, Madeddu P (2001) Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Circulation 103:125–132

    Article  PubMed  CAS  Google Scholar 

  • Figueroa CD, Dietze G, Muller-Esterl W (1996) Immunolocalization of bradykinin B2 receptors on skeletal muscle cells. Diabetes 45(Suppl 1):S24–S28

    Article  PubMed  Google Scholar 

  • Gosselin LE, Williams JE, Deering M, Brazeau D, Koury S, Martinez DA (2004) Localization and early time course of TGF-beta 1 mRNA expression in dystrophic muscle. Muscle Nerve 30:645–653

    Article  PubMed  CAS  Google Scholar 

  • Huart A, Klein J, Gonzalez J, Buffin-Meyer B, Neau E, Delage C, Calise D, Ribes D, Schanstra JP, Bascands JL (2015) Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive. Front Pharmacol 6:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jun JI, Lau LF (2010) Cellular senescence controls fibrosis in wound healing. Aging (Albany NY) 2:627–631

    Article  CAS  Google Scholar 

  • Kharraz Y, Guerra J, Pessina P, Serrano AL, Munoz-Canoves P (2014) Understanding the process of fibrosis in Duchenne muscular dystrophy. Biomed Res Int 2014:965631

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishi K, Muromoto N, Nakaya Y, Miyata I, Hagi A, Hayashi H, Ebina Y (1998) Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes 47:550–558

    Article  PubMed  CAS  Google Scholar 

  • Kisseleva T, Brenner DA (2008a) Fibrogenesis of parenchymal organs. Proc Am Thorac Soc 5:338–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Kisseleva T, Brenner DA (2008b) Mechanisms of fibrogenesis. Exp Biol Med (Maywood) 233:109–122

    Article  CAS  Google Scholar 

  • Klein J, Gonzalez J, Decramer S, Bandin F, Neau E, Salant DJ, Heeringa P, Pesquero JB, Schanstra JP, Bascands JL (2010) Blockade of the kinin B1 receptor ameloriates glomerulonephritis. J Am Soc Nephrol 21:1157–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27–77

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Natesan V, Shi H, Hamik A, Kawanami D, Hao C, Mahabaleshwar GH, Wang W, Jin ZG, Atkins GB, Firth SM, Rittie L, Perbal B, Jain MK (2010) A novel role of CCN3 in regulating endothelial inflammation. J Cell Commun Signal 4:141–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Bledsoe G, Hagiwara M, Yang ZR, Shen B, Chao L, Chao J (2010) Blockade of endogenous tissue kallikrein aggravates renal injury by enhancing oxidative stress and inhibiting matrix degradation. Am J Physiol Renal Physiol. 298:F1033–F1040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Casillas F, Riquelme C, Perez-Kato Y, Ponce-Castaneda MV, Osses N, Esparza-Lopez J, Gonzalez-Nunez G, Cabello-Verrugio C, Mendoza V, Troncoso V, Brandan E (2003) Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta. J Biol Chem 278:382–390

    Article  PubMed  CAS  Google Scholar 

  • Madeddu P, Emanueli C, El-Dahr S (2007) Mechanisms of disease: the tissue kallikrein-kinin system in hypertension and vascular remodeling. Nat Clin Pract Nephrol 3:208–221

    Article  PubMed  CAS  Google Scholar 

  • Marcon R, Claudino RF, Dutra RC, Bento AF, Schmidt EC, Bouzon ZL, Sordi R, Morais RL, Pesquero JB, Calixto JB (2013) Exacerbation of DSS-induced colitis in mice lacking kinin B(1) receptors through compensatory up-regulation of kinin B(2) receptors: the role of tight junctions and intestinal homeostasis. Br J Pharmacol 168:389–402

    Article  PubMed  CAS  Google Scholar 

  • Matsakas A, Yadav V, Lorca S, Narkar V (2013) Muscle ERRgamma mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming. FASEB J 27:4004–4016

    Article  PubMed  CAS  Google Scholar 

  • Messina S, Mazzeo A, Bitto A, Aguennouz M, Migliorato A, De Pasquale MG, Minutoli L, Altavilla D, Zentilin L, Giacca M, Squadrito F, Vita G (2007) VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J 21:3737–3746

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Taguchi T, Uehara M, Isami S, Kishikawa H, Kaneko K, Araki E, Shichiri M (1998) Bradykinin potentiates insulin-stimulated glucose uptake and enhances insulin signal through the bradykinin B2 receptor in dog skeletal muscle and rat L6 myoblasts. Eur J Endocrinol 138:344–352

    Article  PubMed  CAS  Google Scholar 

  • Morales MG, Cabello-Verrugio C, Santander C, Cabrera D, Goldschmeding R, Brandan E (2011) CTGF/CCN-2 over-expression can directly induce features of skeletal muscle dystrophy. J Pathol 225:490–501

    Article  PubMed  CAS  Google Scholar 

  • Morales MG, Cabrera D, Cespedes C, Vio CP, Vazquez Y, Brandan E, Cabello-Verrugio C (2013a) Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2). Cell Tissue Res 353:173–187

    Article  PubMed  CAS  Google Scholar 

  • Morales MG, Gutierrez J, Cabello-Verrugio C, Cabrera D, Lipson KE, Goldschmeding R, Brandan E (2013b) Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 22:4938–4951

    Article  PubMed  CAS  Google Scholar 

  • Morales MG, Acuña MJ, Cabrera D, Goldschmeding R, Brandan E (2017) The pro-fibrotic connective tissue growth factor (CTGF/CCN2) correlates with the number of necrotic-regenerative foci in dystrophic muscle. J Cell Commun Signal. https://doi.org/10.1007/s12079-017-0409-3

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  • Pessina P, Cabrera D, Morales MG, Riquelme CA, Gutierrez J, Serrano AL, Brandan E, Munoz-Canoves P (2014) Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne muscular dystrophy. Skelet Muscle 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Rebolledo DL, Kim MJ, Whitehead NP, Adams ME, Froehner SC (2016) Sarcolemmal targeting of nNOSmu improves contractile function of mdx muscle. Hum Mol Genet 25:158–166

    Article  PubMed  CAS  Google Scholar 

  • Sancho-Bru P, Bataller R, Fernandez-Varo G, Moreno M, Ramalho LN, Colmenero J, Mari M, Claria J, Jimenez W, Arroyo V, Brenner DA, Gines P (2007) Bradykinin attenuates hepatocellular damage and fibrosis in rats with chronic liver injury. Gastroenterology 133:2019–2028

    Article  PubMed  CAS  Google Scholar 

  • Savvatis K, Westermann D, Schultheiss HP, Tschope C (2010) Kinins in cardiac inflammation and regeneration: insights from ischemic and diabetic cardiomyopathy. Neuropeptides 44:119–125

    Article  PubMed  CAS  Google Scholar 

  • Schanstra JP, Neau E, Drogoz P, Arevalo Gomez MA, Lopez Novoa JM, Calise D, Pecher C, Bader M, Girolami JP, Bascands JL (2002) In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest 110:371–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stebbins, C.L., O.A. Carretero, T. Mindroiu, and J.C. Longhurst. 1990. Bradykinin release from contracting skeletal muscle of the cat. J Appl Physiol (1985). 69:1225–1230

  • Sun G, Haginoya K, Wu Y, Chiba Y, Nakanishi T, Onuma A, Sato Y, Takigawa M, Iinuma K, Tsuchiya S (2008) Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy. J Neurol Sci 267:48–56

    Article  PubMed  CAS  Google Scholar 

  • Sun G, Haginoya K, Dai H, Chiba Y, Uematsu M, Hino-Fukuyo N, Onuma A, Iinuma K, Tsuchiya S (2009) Intramuscular renin-angiotensin system is activated in human muscular dystrophy. J Neurol Sci 280:40–48

    Article  PubMed  CAS  Google Scholar 

  • Sweetwyne MT, Murphy-Ullrich JE (2012) Thrombospondin1 in tissue repair and fibrosis: TGF-beta-dependent and independent mechanisms. Matrix Biol 31:178–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 8:857–869

    Article  PubMed  CAS  Google Scholar 

  • Tom B, Dendorfer A, Danser AH (2003) Bradykinin, angiotensin-(1-7), and ACE inhibitors: how do they interact? Int J Biochem Cell Biol 35:792–801

    Article  PubMed  CAS  Google Scholar 

  • Tu L, Xu X, Wan H, Zhou C, Deng J, Xu G, Xiao X, Chen Y, Edin ML, Voltz JW, Zeldin DC, Wang DW (2008) Delivery of recombinant adeno-associated virus-mediated human tissue kallikrein for therapy of chronic renal failure in rats. Hum Gene Ther 19:318–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wehling M, Spencer MJ, Tidball JG (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155:123–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia CF, Bledsoe G, Chao L, Chao J (2005) Kallikrein gene transfer reduces renal fibrosis, hypertrophy, and proliferation in DOCA-salt hypertensive rats. Am J Physiol Renal Physiol 289:F622–F631

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Chung AC, Huang XR, Lan HY (2009) Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension 54:877–884

    Article  PubMed  CAS  Google Scholar 

  • Yao YY, Yin H, Shen B, Chao L, Chao J (2007) Tissue kallikrein and kinin infusion rescues failing myocardium after myocardial infarction. J Card Fail 13:588–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang JJ, Bledsoe G, Kato K, Chao L, Chao J (2004) Tissue kallikrein attenuates salt-induced renal fibrosis by inhibition of oxidative stress. Kidney Int 66:722–732

    Article  PubMed  CAS  Google Scholar 

  • Zhu D, Zhang L, Cheng L, Ren L, Tang J, Sun D (2016) Pancreatic Kininogenase ameliorates renal fibrosis in Streptozotocin induced-diabetic nephropathy rat. Kidney Blood Press Res 41:9–17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Victor Troncoso, Tamara Ramirez, Darling Vera, Lina Correa and Eduardo Ramirez for technical assistance.

Funding

FONDECYT Grant 3,140,323 to M.J.A and 1,150,106 to EB; CARE-PFB-12/2007 grant to E.B. and C.P.V and SQM grant to C.P.V. The funding agencies had no role in the design of the study, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.J.A., C.V. and E.B. conceived the concepts, designed the study and wrote the manuscript. M.J.A. performed the experiments, drafted the manuscript and analyzed the data. A.C-C. helped with western blot and Sirius red quantitation analyses. C.C. did the immunohistochemical stain for CTGF/CCN2, M.C-S and D.S. did the qPCR experiments.

Corresponding authors

Correspondence to Carlos P. Vio or Enrique Brandan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Supplemental Figure 1

BK receptors blockade increases total collagen staining. Sirius red staining reconstruction of gastrocnemius (GAST) from mdx control, mdx HOE-140 and mdx DALBK treated mice. The photographs were taken under polarized light. The red-orange color corresponds to thicker collagen fibers, the yellow to intermediate and the greenish color to thinner. (PDF 1576 kb)

Supplemental Figure 2

Fibronectin is increased in HOE-140 treated mice. A) GAST cryosections were immunostained for fibronectin (FN) to asses for tissue fibrosis. Bar 100 μm. B) and D) are representative western blot analysis for FN from total GAST muscle extracts GAPDH was used as the loading control: B) wild type, mdx control and mdx HOE-140, D) wild type, mdx control and mdx DALBK. C) and E) Quantitation of western blots analyses for FN. One way ANOVA *p < 0,05 vs wild type; ϕ p < 0,05 vs mdx control; n = 4 mdx control; n = 6 mdx HOE-140, n = 6 mdx DALBK and WT n = 5. (PDF 6081 kb)

Supplemental figure 3

CCN1 and CCN3 mRNA levels are decreased in dystrophic muscle treated with HOE-140. Total RNA purified from TA was analyzed by qPCR for ccn1 A) and B) and ccn3 C) and D). 18 s was used as reference gene. T-test *p < 0,05 vs mdx control; n = 6 mdx control; n = 7 mdx HOE-140, n = 6 mdx DALBK (PDF 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acuña, M.J., Salas, D., Córdova-Casanova, A. et al. Blockade of Bradykinin receptors worsens the dystrophic phenotype of mdx mice: differential effects for B1 and B2 receptors. J. Cell Commun. Signal. 12, 589–601 (2018). https://doi.org/10.1007/s12079-017-0439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-017-0439-x

Keywords

Navigation