Journal of Cell Communication and Signaling

, Volume 12, Issue 1, pp 103–112 | Cite as

Matricellular proteins in cancer: a focus on secreted Frizzled-related proteins

  • Krista Marie Vincent
  • Lynne-Marie Postovit


Tumours are complex entities, wherein cancer cells interact with myriad soluble, insoluble and cell associated factors. These microenvironmental mediators regulate tumour growth, progression and metastasis, and are produced by cancer cells and by stromal components such as fibroblast, adipocytes and immune cells. Through their ability to bind to extracellular matrix proteins, cell surface receptors and growth factors, matricellular proteins enable a dynamic reciprocity between cancer cells and their microenvironment. Hence, matricellular proteins play a critical role in tumour progression by regulating where and when cancer cells are exposed to key growth factors and regulatory proteins. Recent studies suggest that, in addition to altering Wingless (Wnt) signalling, certain members of the Secreted Frizzled Related Protein (sFRP) family are matricellular in nature. In this review, we outline the importance of matricellular proteins in cancer, and discuss how sFRPs may function to both inhibit and promote cancer progression in a context-dependent manner. By considering the matricellular functionality of sFRPs, we may better understand their apparently paradoxical roles in cancers.


secreted Frizzled-Related Proteins matricellular cancer microenvironment stroma 



This work was supported by an Alberta Innovates Health Solutions Translational Health Chair in cancer and a Canadian Breast Cancer Foundation operating grant awarded to LMP. LMP was the recipient of the Peter-Lougheed Premier New Investigator Award from the Canadian Institutes of Health Research. KMV is a Vanier Scholar.


  1. Alfaro MP, Pagni M, Vincent A et al (2008) The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci U S A 105:18366–18371. doi: 10.1073/pnas.0803437105 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alfaro MP, Vincent A, Saraswati S et al (2010) sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. J Biol Chem 285:35645–35653. doi: 10.1074/jbc.M110.135335 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amornpisutt R, Proungvitaya S, Jearanaikoon P, Limpaiboon T (2015) DNA methylation level of OPCML and SFRP1: a potential diagnostic biomarker of cholangiocarcinoma. Tumor Biol 36:4973–4978. doi: 10.1007/s13277-015-3147-2 CrossRefGoogle Scholar
  4. Anastassiades OT, Pryce DM (1974) Fibrosis as in indication of time in infiltrating breast cancer and its importance in prognosis. Br J Cancer 29:232–239PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andresen K, Boberg KM, Vedeld HM et al (2015) Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma. Hepatology 61:1651–1659. doi: 10.1002/hep.27707 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10:468–477. doi: 10.1038/nrm2717 PubMedCrossRefGoogle Scholar
  7. Bafico A (1999) Interaction of Frizzled Related Protein (FRP) with Wnt Ligands and the Frizzled Receptor Suggests Alternative Mechanisms for FRP Inhibition of Wnt Signaling. J Biol Chem 274:16180–16187. doi: 10.1074/jbc.274.23.16180 PubMedCrossRefGoogle Scholar
  8. Bhat RA, Stauffer B, Komm BS, Bodine PVN (2007) Structure-function analysis of secreted frizzled-related protein-1 for its Wnt antagonist function. J Cell Biochem 102:1519–1528. doi: 10.1002/jcb.21372 PubMedCrossRefGoogle Scholar
  9. Bornstein P (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol 130:503–506PubMedCrossRefGoogle Scholar
  10. Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14:608–616PubMedCrossRefGoogle Scholar
  11. Bovolenta P, Esteve P, Ruiz JM et al (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121:737–746. doi: 10.1242/jcs.026096 PubMedCrossRefGoogle Scholar
  12. Campbell NE, Kellenberger L, Greenaway J et al (2010) Extracellular Matrix Proteins and Tumor Angiogenesis. J Oncol 2010:1–13. doi: 10.1016/S0945-053X(02)00010-0 CrossRefGoogle Scholar
  13. Chong JM, Uren A, Rubin JS, Speicher DW (2002) Disulfide bond assignments of secreted Frizzled-related protein-1 provide insights about Frizzled homology and netrin modules. J Biol Chem 277:5134–5144. doi: 10.1074/jbc.M108533200 PubMedCrossRefGoogle Scholar
  14. Cruciat C-M, Niehrs C (2013) Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5:a015081. doi: 10.1101/cshperspect.a015081 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dann CE, Hsieh J-C, Rattner A et al (2001) Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412:86–90. doi: 10.1038/35083601 PubMedCrossRefGoogle Scholar
  16. De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sinica 43:745–756. doi: 10.1093/abbs/gmr079 CrossRefGoogle Scholar
  17. Dumont N, Liu B, Defilippis RA et al (2013) Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 15:249–262PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dvorak HF (1986) Tumors: Wounds That Do Not Heal. N Engl J Med 315:1650–1659PubMedCrossRefGoogle Scholar
  19. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. doi: 10.1038/nrc745 PubMedCrossRefGoogle Scholar
  20. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as Organs: Complex Tissues that Interface with the Entire Organism. Dev Cell 18:884–901. doi: 10.1016/j.devcel.2010.05.012 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ehrlund A, Mejhert N, Lorente-Cebrián S et al (2013) Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPs) in human adipose tissue. J Clin Endocrinol Metab 98:E503–E508. doi: 10.1210/jc.2012-3416 PubMedCrossRefGoogle Scholar
  22. Erez N, Truitt M, Olson P, Hanahan D (2010) Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-κB-Dependent Manner. Cancer Cell 17:135–147. doi: 10.1016/j.ccr.2009.12.041 PubMedCrossRefGoogle Scholar
  23. Esteve P, Sandonìs A, Cardozo M et al (2011) SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat Neurosci 14:562–569. doi: 10.1038/nn.2794 PubMedCrossRefGoogle Scholar
  24. Finch PW, He X, Kelley MJ et al (1997) Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci U S A 94:6770–6775PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fontana A, Filleur S, Guglielmi J et al (2005) Human breast tumors override the antiangiogenic effect of stromal thrombospondin-1 in vivo. Int J Cancer 116:686–691. doi: 10.1002/ijc.20584 PubMedCrossRefGoogle Scholar
  26. Gerschenson M, Graves K, Carson SD et al (1986) Regulation of melanoma by the embryonic skin. Proc Natl Acad Sci U S A 83:7307–7310PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gordon MD, Nusse R (2006) Wnt Signaling: Multiple Pathways, Multiple Receptors, and Multiple Transcription Factors. J Biol Chem 281:22429–22433. doi: 10.1074/jbc.R600015200 PubMedCrossRefGoogle Scholar
  28. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi: 10.1016/j.cell.2011.02.013 PubMedCrossRefGoogle Scholar
  29. Harada T, Yamamoto E, Yamano H-O et al (2014) Analysis of DNA methylation in bowel lavage fluid for detection of colorectal cancer. Cancer Prev Res (Phila) 7:1002–1010. doi: 10.1158/1940-6207.CAPR-14-0162 CrossRefGoogle Scholar
  30. Heller RS, Dichmann DS, Jensen J et al (2002) Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Dev Dyn 225:260–270PubMedCrossRefGoogle Scholar
  31. Houart C, Caneparo L, Heisenberg C et al (2002) Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35:255–265PubMedCrossRefGoogle Scholar
  32. Hughes C, Radan L, Chang WY et al (2012) Mass spectrometry-based proteomic analysis of the matrix microenvironment in pluripotent stem cell culture. Mol Cell Proteomics 11:1924–1936. doi: 10.1074/mcp.M112.020057 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219. doi: 10.1126/science.1176009 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hynes RO, Naba A (2012) Overview of the Matrisome—An Inventory of Extracellular Matrix Constituents and Functions. Cold Spring Harb Perspect Biol 4:a004903. doi: 10.1101/cshperspect.a004903 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Jain RK (2013) Normalizing Tumor Microenvironment to Treat Cancer: Bench to Bedside to Biomarkers. J Clin Oncol 31:2205–2218. doi: 10.1200/JCO.2012.46.3653 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520. doi: 10.1016/j.ccr.2005.05.024 PubMedCrossRefGoogle Scholar
  37. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401. doi: 10.1038/nrc1877 PubMedCrossRefGoogle Scholar
  38. Kaur A, Webster MR, Marchbank K et al (2016) sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532:250–254. doi: 10.1038/nature17392 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634. doi: 10.1242/jcs.00623 PubMedCrossRefGoogle Scholar
  40. Kobayashi K, Luo M, Zhang Y et al (2008) Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11:46–55. doi: 10.1038/ncb1811 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Koblinski JE, Kaplan-Singer BR, VanOsdol SJ et al (2005) Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis. Cancer Res 65:7370–7377. doi: 10.1158/0008-5472.CAN-05-0807 PubMedCrossRefGoogle Scholar
  42. Komiya Y, Habas R (2014) Wnt signal transduction pathways. Organ 4:68–75. doi: 10.4161/org.4.2.5851 Google Scholar
  43. Kong W, Yang Y, Zhang T et al (2012) Characterization of sFRP2-like in amphioxus: insights into the evolutionary conservation of Wnt antagonizing function. Evol Dev 14:168–177. doi: 10.1111/j.1525-142X.2012.00533.x PubMedCrossRefGoogle Scholar
  44. Kress E, Rezza A, Nadjar J et al (2009) The Frizzled-related sFRP2 Gene Is a Target of Thyroid Hormone Receptor 1 and Activates β-Catenin Signaling in Mouse Intestine. J Biol Chem 284:1234–1241. doi: 10.1074/jbc.M806548200 PubMedCrossRefGoogle Scholar
  45. Kulesa PM, Kasemeier-Kulesa JC, Teddy JM et al (2006) Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proc Natl Acad Sci U S A 103:3752–3757. doi: 10.1073/pnas.0506977103 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lee J-H, Park S-J, Abraham SC et al (2004a) Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene 23:4646–4654. doi: 10.1038/sj.onc.1207588 PubMedCrossRefGoogle Scholar
  47. Lee J-L, Lin C-T, Chueh L-L, Chang C-J (2004b) Autocrine/paracrine secreted Frizzled-related protein 2 induces cellular resistance to apoptosis: a possible mechanism of mammary tumorigenesis. J Biol Chem 279:14602–14609. doi: 10.1074/jbc.M309008200 PubMedCrossRefGoogle Scholar
  48. Lee HX, Ambrosio AL, Reversade B, De Robertis EM (2006a) Embryonic Dorsal-Ventral Signaling: Secreted Frizzled-Related Proteins as Inhibitors of Tolloid Proteinases. Cell 124:147–159. doi: 10.1016/j.cell.2005.12.018 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lee J-L, Chang C-J, Chueh L-L, Lin C-T (2006b) Secreted frizzled related protein 2 (sFRP2) decreases susceptibility to UV-induced apoptosis in primary culture of canine mammary gland tumors by NF-κB activation or JNK suppression. Breast Cancer Res Treat 100:49–58. doi: 10.1007/s10549-006-9233-9 PubMedCrossRefGoogle Scholar
  50. Leimeister C, Bach A, Gessler M (1998) Developmental expression patterns of mouse sFRP genes encoding members of the secreted frizzled related protein family. Mech Dev 75:29–42. doi: 10.1016/S0925-4773(98)00072-0 PubMedCrossRefGoogle Scholar
  51. Leyns L, Bouwmeester T, Kim SH et al (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–756. doi: 10.1016/S0092-8674(00)81921-2 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lin K, Wang S, Julius MA et al (1997) The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc Natl Acad Sci U S A 94:11196–11200PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liu C, Li N, Lu H et al (2015) Circulating SFRP1 promoter methylation status in gastric adenocarcinoma and esophageal square cell carcinoma. Biomed Rep 3:123–127. doi: 10.3892/br.2014.388 PubMedCrossRefGoogle Scholar
  54. Luo X, Wei B, Chen A et al (2016) Methylation-mediated loss of SFRP2 enhances melanoma cell invasion via Wnt signaling. Am J Transl Res 8:1502–1509PubMedPubMedCentralGoogle Scholar
  55. Ma J, Cheng J, Gong Y et al (2015) Downregulation of Wnt signaling by sonic hedgehog activation promotes repopulation of human tumor cell lines. Dis Model Mech 8:385–391. doi: 10.1242/dmm.018887 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mao Y, Keller ET, Garfield DH et al (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32:303–315. doi: 10.1007/s10555-012-9415-3 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Marschall von Z, Fisher LW (2010) Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling. Biochem Biophys Res Commun 400:299–304. doi: 10.1016/j.bbrc.2010.08.043 CrossRefGoogle Scholar
  58. Marsh T, Pietras K, McAllister SS (2013) Fibroblasts as architects of cancer pathogenesis. Biochim Biophys Acta 1832:1070–1078. doi: 10.1016/j.bbadis.2012.10.013 PubMedCrossRefGoogle Scholar
  59. Martin-Manso G, Calzada MJ, Chuman Y et al (2011) sFRP-1 binds via its netrin-related motif to the N-module of thrombospondin-1 and blocks thrombospondin-1 stimulation of MDA-MB-231 breast carcinoma cell adhesion and migration. Arch Biochem Biophys 509:147–156. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  60. Mastri M, Shah Z, Hsieh K et al (2014) Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention. Am J Physiol, Cell Physiol 306:C531–C539. doi: 10.1152/ajpcell.00238.2013 PubMedCrossRefGoogle Scholar
  61. Matsuyama M, Aizawa S, Shimono A (2009) Sfrp Controls Apicobasal Polarity and Oriented Cell Division in Developing Gut Epithelium. PLoS Genet 5:e1000427. doi: 10.1371/journal.pgen.1000427 PubMedPubMedCentralCrossRefGoogle Scholar
  62. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol 13:534–540. doi: 10.1016/S0955-0674(00)00248-9 PubMedCrossRefGoogle Scholar
  63. Mii Y, Taira M (2009) Secreted Frizzled-related proteins enhance the diffusion of Wnt ligands and expand their signalling range. Development 136:4083–4088. doi: 10.1242/dev.032524 PubMedCrossRefGoogle Scholar
  64. Miller JR, Hocking AM, Brown JD, Moon RT (2000) Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872. doi: 10.1038/sj.onc.1203245 CrossRefGoogle Scholar
  65. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. doi: 10.1038/nature03799 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72:3585–3589PubMedPubMedCentralCrossRefGoogle Scholar
  67. Misra K, Matise MP (2010) A critical role for sFRP proteins in maintaining caudal neural tube closure in mice via inhibition of BMP signaling. Dev Biol 337:74–83. doi: 10.1016/j.ydbio.2009.10.015 PubMedCrossRefGoogle Scholar
  68. Mueller MM, Fusenig NE (2004) Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849. doi: 10.1038/nrc1477 PubMedCrossRefGoogle Scholar
  69. Muraoka O, Shimizu T, Yabe T et al (2006) Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein. Nat Cell Biol 8:329–338. doi: 10.1038/ncb1379 PubMedCrossRefGoogle Scholar
  70. Naba A, Clauser KR, Lamar JM et al (2014) Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. elife 3:e01308. doi: 10.7554/eLife.01308 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nathan E, Tzahor E (2009) sFRPs: a declaration of (Wnt) independence. Nat Cell Biol 11:13–13. doi: 10.1038/ncb0109-13 PubMedCrossRefGoogle Scholar
  72. Olumi AF, Grossfeld GD, Hayward SW et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011PubMedGoogle Scholar
  73. Orimo A, Weinberg RA (2007) Heterogeneity of Stromal Fibroblasts in Tumors. Cancer Biol Ther 6(4):6180619CrossRefGoogle Scholar
  74. Oshiba G, Kijima H, Himeno S et al (1999) Stromal thrombospondin-1 expression is correlated with progression of esophageal squamous cell carcinomas. Anticancer Res 19:4375–4378PubMedGoogle Scholar
  75. Petersen OW, Nielsen HL, Gudjonsson T et al (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162:391–402. doi: 10.1016/S0002-9440(10)63834-5 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Piccolo S, Agius E, Lu B et al (1997) Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91:407–416PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pietras K, Östman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316:1324–1331. doi: 10.1016/j.yexcr.2010.02.045 PubMedCrossRefGoogle Scholar
  78. Ploper D, Lee HX, De Robertis EM (2011) Dorsal-ventral patterning: Crescent is a dorsally secreted Frizzled-related protein that competitively inhibits Tolloid proteases. Dev Biol 352:317–328. doi: 10.1016/j.ydbio.2011.01.029 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Polyak K, Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet 25:30–38. doi: 10.1016/j.tig.2008.10.012 PubMedCrossRefGoogle Scholar
  80. Postovit LM (2006) Influence of the Microenvironment on Melanoma Cell Fate Determination and Phenotype. Cancer Res 66:7833–7836. doi: 10.1158/0008-5472.CAN-06-0731 PubMedCrossRefGoogle Scholar
  81. Postovit L-M, Seftor EA, Seftor REB, Hendrix MJC (2006) A Three-Dimensional Model to Study the Epigenetic Effects Induced by the Microenvironment of Human Embryonic Stem Cells. Stem Cells 24:501–505. doi: 10.1634/stemcells.2005-0459 PubMedCrossRefGoogle Scholar
  82. Qu Y, Ray PS, Li J et al (2013) High levels of secreted frizzled-related protein 1 correlate with poor prognosis and promote tumourigenesis in gastric cancer. Eur J Cancer 49:3718–3728. doi: 10.1016/j.ejca.2013.07.011 PubMedCrossRefGoogle Scholar
  83. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437. doi: 10.1038/nm.3394 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rattner A, Hsieh JC, Smallwood PM et al (1997) A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci U S A 94:2859–2863PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rodriguez J, Esteve P, Weinl C et al (2005) SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat Neurosci 8:1301–1309. doi: 10.1038/nn1547 PubMedCrossRefGoogle Scholar
  86. Ruiz JM, Rodriguez J, Bovolenta P (2009) Growth and differentiation of the retina and the optic tectum in the medaka fish requires ol Sfrp5. Devel Neurobio 69:617–632. doi: 10.1002/dneu.20731 CrossRefGoogle Scholar
  87. Sage EH, Bornstein P (1991) Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem 266:14831–14834PubMedGoogle Scholar
  88. Saini S, Liu J, Yamamura S et al (2009) Functional significance of secreted Frizzled-related protein 1 in metastatic renal cell carcinomas. Cancer Res 69:6815–6822. doi: 10.1158/0008-5472.CAN-09-1254 PubMedCrossRefGoogle Scholar
  89. Sangaletti S, Colombo MP (2008) Matricellular proteins at the crossroad of inflammation and cancer. Cancer Lett 267:245–253. doi: 10.1016/j.canlet.2008.03.027 PubMedCrossRefGoogle Scholar
  90. Sargiannidou I, Zhou J, Tuszynski GP (2001) The role of thrombospondin-1 in tumor progression. Exp Biol Med (Maywood) 226:726–733CrossRefGoogle Scholar
  91. Satoh W (2006) Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133:989–999. doi: 10.1242/dev.02274 PubMedCrossRefGoogle Scholar
  92. Satoh W, Matsuyama M, Takemura H et al (2008) Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis 46:92–103. doi: 10.1002/dvg.20369 PubMedCrossRefGoogle Scholar
  93. Scardigli R, Gargioli C, Tosoni D et al (2008) Binding of sFRP-3 to EGF in the Extra-Cellular Space Affects Proliferation, Differentiation and Morphogenetic Events Regulated by the Two Molecules. PLoS One 3:e2471. doi: 10.1371/journal.pone.0002471 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Seftor EA, Brown KM, Chin L (2005) Epigenetic Transdifferentiation of Normal Melanocytes by a Metastatic Melanoma Microenvironment. Cancer Res 65:10164–10169. doi: 10.1158/0008-5472.CAN-05-2497 PubMedCrossRefGoogle Scholar
  95. Smid M, Wang Y, Zhang Y et al (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114. doi: 10.1158/0008-5472.CAN-07-5644 PubMedCrossRefGoogle Scholar
  96. Stuckenholz C, Lu L, Thakur PC et al (2013) Sfrp5 Modulates Both Wnt and BMP Signaling and Regulates Gastrointestinal Organogensis in the Zebrafish, Danio rerio. PLoS One 8:e62470. doi: 10.1371/journal.pone.0062470 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of Fibroblast Heterogeneity in the Tumor Microenvironment. Cancer Biol Ther 5(12):1620–1626CrossRefGoogle Scholar
  98. Sun Y, Zhu D, Chen F et al (2016) SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. doi: 10.1038/onc.2015.494
  99. Surana R, Sikka S, Cai W et al (2014) Secreted frizzled related proteins: Implications in cancers. Biochim Biophys Acta 1845:53–65. doi: 10.1016/j.bbcan.2013.11.004 PubMedGoogle Scholar
  100. Suzuki H, Gabrielson E, Chen W et al (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31:141–149. doi: 10.1038/ng892 PubMedCrossRefGoogle Scholar
  101. Taraboletti G, Morbidelli L, Donnini S et al (2000) The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J 14:1674–1676. doi: 10.1096/fj.99-0931fje PubMedCrossRefGoogle Scholar
  102. Taubenberger AV, Bray LJ, Haller B et al (2016) 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Acta Biomater 36:73–85. doi: 10.1016/j.actbio.2016.03.017 PubMedCrossRefGoogle Scholar
  103. Ugolini F, Adélaïde J, Charafe-Jauffret E et al (1999) Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene 18:1903–1910. doi: 10.1038/sj.onc.1202739 PubMedCrossRefGoogle Scholar
  104. Vincent KM, Postovit L-M (2017) A pan-cancer analysis of secreted Frizzled-related proteins: re-examining their proposed tumour suppressive function. Sci Rep 7:42719. doi: 10.1038/srep42719 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang S, Krinks M, Lin K et al (1997) Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88:757–766PubMedCrossRefGoogle Scholar
  106. Warr N, Siggers P, Bogani D et al (2009) Sfrp1 and Sfrp2 are required for normal male sexual development in mice. Dev Biol 326:273–284. doi: 10.1016/j.ydbio.2008.11.023 PubMedCrossRefGoogle Scholar
  107. Weidinger G, Moon RT (2003) When Wnts antagonize Wnts. J Cell Biol 162:753–755. doi: 10.1083/jcb.200307181 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Yabe T (2003) Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development 130:2705–2716. doi: 10.1242/dev.00506 PubMedCrossRefGoogle Scholar
  109. Yam JWP, Chan KW, Ngan ESW, Hsiao WLW (2005) Genomic structure, alternative splicing and tissue expression of rFrp/sFRP-4, the rat frizzled related protein gene. Gene 357:55–62. doi: 10.1016/j.gene.2005.05.025 PubMedCrossRefGoogle Scholar
  110. Yamamura S, Kawakami K, Hirata H et al (2010) Oncogenic functions of secreted Frizzled-related protein 2 in human renal cancer. Mol Cancer Ther 9:1680–1687. doi: 10.1158/1535-7163.MCT-10-0012 PubMedCrossRefGoogle Scholar
  111. Yan J, Jia H, Ma Z et al (2014) The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain. Gene 533:229–239. doi: 10.1016/j.gene.2013.09.083 PubMedCrossRefGoogle Scholar
  112. Yeung T-L, Leung CS, Wong K-K, Mok SC (2014) Identification and characterization of stromal factors with clinical significance in the ovarian tumor microenvironment. Cancer Res 74:4799–4799. doi: 10.1158/1538-7445.AM2014-4799 CrossRefGoogle Scholar
  113. Yokota T, Oritani K, Garrett KP et al (2008) Soluble frizzled-related protein 1 is estrogen inducible in bone marrow stromal cells and suppresses the earliest events in lymphopoiesis. J Immunol 181:6061–6072PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yoshino K, Rubin JS, Higinbotham KG et al (2001) Secreted Frizzled-related proteins can regulate metanephric development. Mech Dev 102:45–55PubMedCrossRefGoogle Scholar
  115. Zeisberg EM, Potenta S, Xie L et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67:10123–10128. doi: 10.1158/0008-5472.CAN-07-3127 PubMedCrossRefGoogle Scholar
  116. Zhang Z, Deb A, Zhang Z et al (2009) Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol 46:370–377. doi: 10.1016/j.yjmcc.2008.11.016 PubMedCrossRefGoogle Scholar

Copyright information

© The International CCN Society 2017

Authors and Affiliations

  1. 1.Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
  2. 2.Department of Anatomy and Cell Biology, Faculty of Medicine and DentistryUniversity of Western OntarioLondonCanada

Personalised recommendations