Letters in Spatial and Resource Sciences

, Volume 10, Issue 2, pp 141–147 | Cite as

Spatio-temporal dynamics of house prices in the USA

Original Paper
  • 155 Downloads

Abstract

This study examines the space-time dynamics of real house prices and macroeconomic fundamentals such as real per capita disposable income and interest rate across 373 metropolitan areas in the US during 1976–2011. The estimation results of the dynamic spatial Durbin model show significant spatial spillover effects indicating that macroeconomic fundamentals of neighboring metropolitan areas play important role in real house price determination. The time varying version of the dynamic model also indicates an increasing spatial correlation in house price and income interactions over the sample period.

Keywords

Dynamic spatial model Real house prices Real per capita disposable income Time varying spatial model 

JEL Classification

C21 C23 

References

  1. Anselin, L.: Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Boston (1988)CrossRefGoogle Scholar
  2. Apergis, N., Payne, J.: Convergence in U.S. house prices by state: evidence from the club convergence and clustering procedure. Lett. Spatial Resour. Sci. 5, 103–111 (2012)CrossRefGoogle Scholar
  3. Baltagi, B., Li, J.: Further evidence on the spatio-temporal model of house prices in the United States. J. Appl. Econ. 19, 515–522 (2014)CrossRefGoogle Scholar
  4. Debarsy, N., Ertur, C., LeSage, J.: Interpreting dynamic space-time panel data models. Stat. Methodol. 1–2, 158–171 (2012)CrossRefGoogle Scholar
  5. Elhort, J.P.: Spatial Econometrics: From Cross-Sectional Data to Spatial Panels. Springer, Briefs in Regional Science (2014)Google Scholar
  6. Elhorst, P.: Dynamic spatial panels: models, methods and inferences. J. Geogr. Syst. 14, 5–28 (2012)CrossRefGoogle Scholar
  7. Elhorst, P.: Applied spatial econometrics: raising the bar. Spatial Econ. Anal. 5, 9–28 (2010)CrossRefGoogle Scholar
  8. Halleck Vega, S., Elhorst, J.P.: Modeling regional labor market dynamics in space and time. Pap. Reg. Sci. 93(4), 819–841 (2014)Google Scholar
  9. Holly, S., Pesaran, M.H., Yamagata, T.: A spatio-temporal model of house prices in the USA. J. Econ. 158, 160–173 (2010)CrossRefGoogle Scholar
  10. Kryvobokov, M., Mercier, A., Bonnafous, A., Bouf, D.: Simulating housing prices with UrbanSim: predictive capacity and sensitivity analysis. Lett. Spatial Resour. Sci. 6, 31–41 (2013)CrossRefGoogle Scholar
  11. LeSage, J., Fischer, M.: Spatial growth regressions: model specification, estimation and interpretation. Spatial Econ. Anal. Taylor Francis J. 3, 275–304 (2008)CrossRefGoogle Scholar
  12. LeSage, J., Pace, R.K.: Introduction to Spatial Econometrics. CRC Press Taylor & Francis Group, Boca Raton, FL (2009)Google Scholar
  13. Malpezzi, S.: A simple error correction model of house prices. J. Hous. Econ. 8, 27–63 (1999)CrossRefGoogle Scholar
  14. Pesaran, M.H.: Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 74, 967–1012 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.GeoDa Center for Geospatial Analysis and Computation, School of Geographical Sciences and Urban PlanningArizona State UniversityTempeUSA

Personalised recommendations