A hybrid EVSA approach in clustered search space with ad-hoc partitioning for multi-robot searching


This paper examines the problem of multi-robot target searching in an unknown environment. Since no information is available about the targets, so the search is similar to the exploration problem. In this paper, a new method is proposed to improve the efficiency of exploration. The objective of the proposed approach is to minimize the exploration time by reducing the redundant coverage and computational overhead. For exploration, the concept of frontiers is being used. The following hypothesis formulated in order to improve the exploration: (1) Introduction of an ad-hoc partitioning method to handle redundant coverage. (2) Reduction of the search space by clustering (grouping) the frontier cells to minimize the computational overhead. (3) Introduction of methods for robots’ next position assignment problem, namely, nearest frontier-cluster center method when a single robot is searching in the sub-region. A hybrid of Egyptian vulture and simulated annealing based approach when more than one robots are searching within a sub-region. Performance of the proposed approach is evaluated through simulation in two different workspaces with a team size of 2 and 4 robots. Four different performance measures namely Redundant coverage, Object localization time, Exploration time and Exploration percentage are considered to evaluate the performance of the proposed method. Results show that proposed hybrid-EVSA method completes exploration much faster in both the workspaces with the team size of 2 and 4 robots as compared to other state of art approaches due to low computational overhead and reduced redundant coverage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Al Khawaldah M, Al-Khedher M, Al-Adwan I, Al Rawashdeh A (2014) An autonomous exploration strategy for cooperative mobile robots. J Softw Eng Appl 7(3):142

    Article  Google Scholar 

  2. 2.

    Al Khawaldah M, Nüchter A (2015) Enhanced frontier-based exploration for indoor environment with multiple robots. Adv Robot 29(10):657–669

    Article  Google Scholar 

  3. 3.

    Albina K, Lee SG (2019) Hybrid stochastic exploration using grey wolf optimizer and coordinated multi-robot exploration algorithms. IEEE Access 7:14246–14255

    Article  Google Scholar 

  4. 4.

    Altshuler Y, Pentland A, Bruckstein AM (2018) Cooperative swarm cleaning of stationary domains. In: Swarms and network intelligence in search, Springer, New York, pp 15–49

  5. 5.

    Annealing S, Kirkpatrick S (1983) Gelatt; cd, vecchi, mp: optimization. Sci New Ser 220(4598):671–680

    Google Scholar 

  6. 6.

    Arezoumand R, Mashohor S, Marhaban MH (2016) Efficient terrain coverage for deploying wireless sensor nodes on multi-robot system. Intell Serv Robot 9(2):163–175

    Article  Google Scholar 

  7. 7.

    Arvanitakis I, Tzes A (2017) Collaborative mapping and navigation for a mobile robot swarm. In: 2017 25th mediterranean conference on control and automation (MED), IEEE, pp 696–700

  8. 8.

    Barraquand J, Langlois B, Latombe JC (1992) Numerical potential field techniques for robot path planning. IEEE Trans Syst Man Cybern 22(2):224–241

    MathSciNet  Article  Google Scholar 

  9. 9.

    Basu P, Redi J (2004) Movement control algorithms for realization of fault-tolerant ad hoc robot networks. IEEE Netw 18(4):36–44

    Article  Google Scholar 

  10. 10.

    Benavides F, Monzón P, Chanel CPC, Grampín E (2016) Multi-robot cooperative systems for exploration: advances in dealing with constrained communication environments. In: 2016 XIII Latin American, Robotics symposium and IV Brazilian robotics symposium (LARS/SBR), IEEE, pp 181–186

  11. 11.

    Benkrid A, Achour N (2017) A novel approach for coordinated multi-robot exploration. In: 2017 6th international conference on systems and control (ICSC), IEEE, pp 509–513

  12. 12.

    Benkrid A, Benallegue A, Achour N (2016) Robot’s energy consumption based multi-robot exploration strategy. In: 2016 IEEE international conference on robotics and biomimetics (ROBIO), IEEE, pp 1129–1134

  13. 13.

    Benkrid A, Benallegue A, Achour N (2019) Multi-robot coordination for energy-efficient exploration. J Control Autom Electr Syst 30(6):911–920

    Article  Google Scholar 

  14. 14.

    Burgard W, Moors M, Stachniss C, Schneider FE (2005) Coordinated multi-robot exploration. IEEE Trans Robot 21(3):376–386

    Article  Google Scholar 

  15. 15.

    Carrillo H, Dames P, Kumar V, Castellanos JA (2018) Autonomous robotic exploration using a utility function based on Rényis general theory of entropy. Auton Robots 42(2):235–256

    Article  Google Scholar 

  16. 16.

    Chen J, Sun D, Yang J, Chen H (2010) Leader-follower formation control of multiple non-holonomic mobile robots incorporating a receding-horizon scheme. Int J Robot Res 29(6):727–747

    Article  Google Scholar 

  17. 17.

    Colares RG, Chaimowicz L (2016) The next frontier: combining information gain and distance cost for decentralized multi-robot exploration. In: Proceedings of the 31st annual ACM symposium on applied computing, ACM, pp 268–274

  18. 18.

    Corah M, Michael N (2019) Distributed matroid-constrained submodular maximization for multi-robot exploration: theory and practice. Auton Robot 43(2):485–501

    Article  Google Scholar 

  19. 19.

    De Hoog J, Cameron S, Visser A et al (2010) Autonomous multi-robot exploration in communication-limited environments. In: Proceedings of the 11th conference towards autonomous robotic systems (Taros 2010)

  20. 20.

    Franchi A, Freda L, Oriolo G, Vendittelli M (2009) The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Trans Mechatron 14(2):163–175

    Article  Google Scholar 

  21. 21.

    Gomez C, Hernandez AC, Barber R (2019) Topological frontier-based exploration and map-building using semantic information. Sensors 19(20):4595

    Article  Google Scholar 

  22. 22.

    Khan A, Noreen I, Ryu H, Doh NL, Habib Z (2017) Online complete coverage path planning using two-way proximity search. Intell Serv Robot 10(3):229–240

    Article  Google Scholar 

  23. 23.

    Kleiner A, Prediger J, Nebel B (2006) Rfid technology-based exploration and slam for search and rescue. In: IEEE/RSJ international conference and proceedings on intelligent robots and systems (IROS), pp 4054–4059

  24. 24.

    Kulich M, Juchelka T, Přeučil L (2015) Comparison of exploration strategies for multi-robot search. Acta Polytech 55(3):162–168

    Article  Google Scholar 

  25. 25.

    Li G, Zhang D, Shi Y (2019) An unknown environment exploration strategy for swarm robotics based on brain storm optimization algorithm. In: 2019 IEEE congress on evolutionary computation (CEC), IEEE, pp 1044–1051

  26. 26.

    Lopez-Perez JJ, Hernandez-Belmonte UH, Ramirez-Paredes JP, Contreras-Cruz MA, Ayala-Ramirez V (2018) Distributed multirobot exploration based on scene partitioning and frontier selection. Math Problems Eng 2018:17

    Article  Google Scholar 

  27. 27.

    Ma X, Zhang Q, Chen W, Li Y (2007) Immunity-based adaptive genetic algorithm for multi-robot cooperative exploration. In: International conference on intelligent computing, Springer, New York, pp 605–616

  28. 28.

    Mahadev A, Krupke D, Fekete SP, Becker AT (2017) Mapping and coverage with a particle swarm controlled by uniform inputs. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp 1097–1104

  29. 29.

    Mei Y, Lu YH, Lee CG, Hu YC (2006) Energy-efficient mobile robot exploration. In: Proceedings 2006 IEEE international conference on robotics and automation, ICRA 2006, IEEE, pp 505–511

  30. 30.

    Otte M (2018) An emergent group mind across a swarm of robots: collective cognition and distributed sensing via a shared wireless neural network. Int J Robot Res 37(9):1017–1061

    Article  Google Scholar 

  31. 31.

    Pal A, Tiwari R, Shukla A (2012) Multi robot exploration through pruning frontiers. In: Advanced materials research, vol 462, Trans Tech Publ, pp 609–616

  32. 32.

    Pang B, Song Y, Zhang C, Wang H, Yang R (2019) A swarm robotic exploration strategy based on an improved random walk method. J Robot 2019:9

    Google Scholar 

  33. 33.

    Sànchez NDG, Vargas PA, Couceiro MS (2018) A darwinian swarm robotics strategy applied to underwater exploration. In: 2018 IEEE congress on evolutionary computation (CEC), IEEE, pp 1–6

  34. 34.

    Sánchez-García J, Reina D, Toral S (2019) A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Gener Comput Syst 90:129–148

    Article  Google Scholar 

  35. 35.

    Shao J, Xie G, Wang L (2007) Leader-following formation control of multiple mobile vehicles. IET Control Theory Appl 1(2):545–552

    Article  Google Scholar 

  36. 36.

    Simmons R, Apfelbaum D, Burgard W, Fox D, Moors M, Thrun S, Younes H (2000) Coordination for multi-robot exploration and mapping. In: AAAI/IAAI, pp 852–858

  37. 37.

    Solanas A, Garcia MA (2004) Coordinated multi-robot exploration through unsupervised clustering of unknown space. In: 2004 IEEE/RSJ international conference and proceedings on intelligent robots and systems, (IROS 2004), vol 1, IEEE, pp 717–721

  38. 38.

    Sur C, Sharma S, Shukla A (2013) Egyptian vulture optimization algorithm—a new nature inspired meta-heuristics for knapsack problem. In: The 9th international conference on computing and information technology (IC2IT2013), Springer, pp 227–237

  39. 39.

    Wang C, Zhu D, Li T, Meng MQH, Silva CD (2018) SRM: an efficient framework for autonomous robotic exploration in indoor environments. arXiv preprint arXiv:1812.09852

  40. 40.

    Wolpert DH, Macready WG et al (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82

    Article  Google Scholar 

  41. 41.

    Wu L, García García M Á, Puig Valls D, Solé Ribalta A (2007) Voronoi-based space partitioning for coordinated multi-robot exploration

  42. 42.

    Yamauchi B (1997) A frontier-based approach for autonomous exploration. In: 1997 IEEE international symposium and proceedings on computational intelligence in robotics and automation, CIRA’97, IEEE, pp 146–151

  43. 43.

    Yamauchi B (1998) Frontier-based exploration using multiple robots. In: Proceedings of the second international conference on autonomous agents, ACM, pp 47–53

  44. 44.

    Zhou Y, Xiao K, Wang Y, Liang A, Hassanien AE (2019) A PSO-inspired multi-robot map exploration algorithm using frontier-based strategy: concepts, methodologies, tools, and applications, pp 362–375, https://doi.org/10.4018/978-1-5225-8060-7.ch017

  45. 45.

    Ziparo VA, Kleiner A, Nebel B, Nardi D (2007) RFID-based exploration for large robot teams. In: 2007 IEEE international conference on robotics and automation, IEEE, pp 4606–4613

Download references

Author information



Corresponding author

Correspondence to Upma Jain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jain, U., Tiwari, R. & Godfrey, W.W. A hybrid EVSA approach in clustered search space with ad-hoc partitioning for multi-robot searching. Evol. Intel. 13, 551–570 (2020). https://doi.org/10.1007/s12065-020-00356-1

Download citation


  • Multi-robot system
  • Target searching
  • Exploration
  • Frontier-cluster
  • Ad-hoc partitioning