Skip to main content

Advertisement

Log in

Genetics, coronary artery disease, and myocardial revascularization: will novel genetic risk scores bring new answers?

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Both percutaneous coronary intervention (PCI) and coronary artery bypass graft surgery (CABG) are options for revascularization in multi-vessel coronary artery disease (CAD). However, the best form of revascularization remains controversial. Results from clinical trials (FREEDOM, SYNTAX, NOBLE, EXCEL) have identified factors related to CAD severity such as diabetes and SYNTAX score as indicators that patients may have better outcomes with CABG compared to PCI. Nevertheless, the discovery of other predictors of optimal revascularization therapy is necessary to improve decision-making and personalize the treatment of multi-vessel CAD. Genome-wide association studies have identified numerous previously unknown DNA variants that increase predisposition for CAD. Recently, a composite polygenic risk score has been developed to better assess the relative contribution of multiple SNPs and quantify overall genetic risk for CAD. High polygenic risk score is associated with increased coronary events and greater benefit from statin therapy in large observational studies. This effect is independent from traditional cardiovascular risk factors. At the same time, randomized clinical trials have shown that CAD severity is a determinant of optimal revascularization treatment. It remains unknown whether polygenic risk score is robustly associated with increased CAD severity at presentation, and whether this score can be used to identify patients who will show greater benefit from revascularization with CABG or with PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mancini GB, Farkouh ME, Brooks MM, et al. Medical treatment and revascularization options in patients with type 2 diabetes and coronary disease. J Am Coll Cardiol. 2016;68:985–95.

    Article  PubMed  Google Scholar 

  2. Gersh BJ, Stone GW, Bhatt DL. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with left main and multivessel coronary artery disease: do we have the evidence? Circulation. 2017;135:819–21.

    Article  PubMed  Google Scholar 

  3. Ruel M, Farkouh ME. Why NOBLE and EXCEL are consistent with each other and with previous trials. Circulation. 2017;135:822–4.

    Article  PubMed  Google Scholar 

  4. Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360:961–72.

    Article  CAS  Google Scholar 

  5. Head SJ, Davierwala PM, Serruys PW, et al. Coronary artery bypass grafting vs. percutaneous coronary intervention for patients with three-vessel disease: final five-year follow-up of the SYNTAX trial. Eur Heart J. 2014;35:2821–30.

    Article  CAS  PubMed  Google Scholar 

  6. Kolh P, Windecker S, Alfonso F, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg. 2014;46:517–92.

    Article  PubMed  Google Scholar 

  7. Goldenberg G, Kornowski R. Coronary Bypass Surgery versus Percutaneous Coronary Intervention: The Saga Continues. Interv Cardiol. 2012;4:653–60.

    Article  Google Scholar 

  8. Zhao DF, Edelman JJ, Seco M, et al. Coronary artery bypass grafting with and without manipulation of the ascending aorta: A network meta-analysis. J Am Coll Cardiol. 2017;69:924–36.

    Article  PubMed  Google Scholar 

  9. Taggart DP. Stents or surgery in coronary artery disease in 2013. Ann Cardiothorac Surg. 2013;2:431–4.

    PubMed  PubMed Central  Google Scholar 

  10. Farooq V, van Klaveren D, Steyerberg EW, et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet. 2013;381:639–50.

    Article  PubMed  Google Scholar 

  11. Mäkikallio T, Holm NR, Lindsay M, et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE): a prospective, randomised, open-label, non-inferiority trial. Lancet. 2016;388:2743–52.

    Article  Google Scholar 

  12. Stone GW, Sabik JF, Serruys PW, et al. Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N Engl J Med. 2016;375:2223–35.

    Article  CAS  Google Scholar 

  13. Farkouh ME, Domanski M, Sleeper LA, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.

    Article  CAS  Google Scholar 

  14. Saely CH, Drexel H, Sourij H, et al. Key role of postchallenge hyperglycemia for the presence and extent of coronary atherosclerosis: an angiographic study. Atherosclerosis. 2008;199:317–22.

    Article  CAS  PubMed  Google Scholar 

  15. Halon DA, Merdler A, Flugelman MY, et al. Late-onset heart failure as a mechanism for adverse long-term outcome in diabetic patients undergoing revascularization (a 13-year report from the Lady Davis Carmel Medical Center registry). Am J Cardiol. 2000;85:1420–6.

    Article  CAS  PubMed  Google Scholar 

  16. Wu KY, Timmerman N, McPhedran R, Beanlands R, de Kemp R, Chong AY. In the presence of significant epicardial coronary disease, diabetes mellitus is further associated with reduced myocardial flow reserve. J Am Coll Cardiol. 2017;69:1401.

    Article  Google Scholar 

  17. Mehran R, Dangas GD, Kobayashi Y. et al.Short- and long-term results after multivessel stenting in diabetic patients. J Am Coll Cardiol. 2004;43:1348–54.

    Article  PubMed  Google Scholar 

  18. Kornowski R, Mintz GS, Kent KM, et al. Increased restenosis in diabetes mellitus after coronary interventions is due to exaggerated intimal hyperplasia. A serial intravascular ultrasound study. Circulation. 1997;95:1366–9.

    Article  CAS  PubMed  Google Scholar 

  19. Thourani VH, Weintraub WS, Stein B, et al. Influence of diabetes mellitus on early and late outcome after coronary artery bypass grafting. Ann Thorac Surg. 1999;67:1045–52.

    Article  CAS  PubMed  Google Scholar 

  20. Lawrie GM, Morris GC Jr, Glaeser DH. Influence of diabetes mellitus on the results of coronary bypass surgery. Follow-up of 212 diabetic patients ten to 15 years after surgery. JAMA. 1986;256:2967–71.

    Article  CAS  PubMed  Google Scholar 

  21. Salomon NW, Page US, Okies JE, Stephens J, Krause AH, Bigelow JC. Diabetes mellitus and coronary artery bypass. Short-term risk and long-term prognosis. J Thorac Cardiovasc Surg. 1983;85:264–71.

    CAS  PubMed  Google Scholar 

  22. Bair TL, Muhlestein JB, May HT, et al. Surgical revascularization is associated with improved long-term outcomes compared with percutaneous stenting in most subgroups of patients with multivessel coronary artery disease: results from the Intermountain Heart Registry. Circulation. 2007;116:I226–31.

    Article  PubMed  Google Scholar 

  23. Hannan EL, Racz MJ, Walford G, et al. Long-term outcomes of coronary-artery bypass grafting versus stent implantation. N Engl J Med. 2005;352:2174–83.

    Article  CAS  Google Scholar 

  24. Hannan EL, Wu C, Walford G, et al. Drug-eluting stents vs. coronary-artery bypass grafting in multivessel coronary disease. N Engl J Med. 2008;358:331–41.

    Article  CAS  Google Scholar 

  25. Hlatky MA, Boothroyd DB, Bravata DM, et al. Coronary artery bypass surgery compared with percutaneous coronary interventions for multivessel disease: a collaborative analysis of individual patient data from ten randomised trials. Lancet. 2009;373:1190–7.

    Article  Google Scholar 

  26. Taggart DP. Thomas B. Ferguson Lecture. Coronary artery bypass grafting is still the best treatment for multivessel and left main disease, but patients need to know. Ann Thorac Surg. 2006;82:1966–75.

    Article  PubMed  Google Scholar 

  27. Birkmeyer JD, Siewers AE, Finlayson EV, et al. Hospital volume and surgical mortality in the United States. N Engl J Med. 2002;346:1128–37.

    Article  PubMed  Google Scholar 

  28. Peterson ED, Coombs LP, DeLong ER, Haan CK, Ferguson TB. Procedural volume as a marker of quality for CABG surgery. JAMA. 2004;291:195–201.

    Article  CAS  PubMed  Google Scholar 

  29. Nallamothu BK, Saint S, Hofer TP, Vijan S, Eagle KA, Bernstein SJ. Impact of patient risk on the hospital volume-outcome relationship in coronary artery bypass grafting. Arch Intern Med. 2005;165:333–7.

    Article  PubMed  Google Scholar 

  30. Cram P, Rosenthal GE, Vaughan-Sarrazin MS. Cardiac revascularization in specialty and general hospitals. N Engl J Med. 2005;352:1454–62.

    Article  CAS  PubMed  Google Scholar 

  31. Yau TM, Fedak PW, Weisel RD, Teng C, Ivanov J. Predictors of operative risk for coronary bypass operations in patients with left ventricular dysfunction. J Thorac Cardiovasc Surg. 1999;118:1006–13.

    Article  CAS  PubMed  Google Scholar 

  32. Fortescue EB, Kahn K, Bates DW. Development and validation of a clinical prediction rule for major adverse outcomes in coronary bypass grafting. Am J Cardiol. 2001;88:1251–8.

    Article  CAS  PubMed  Google Scholar 

  33. Anderson HV, Shaw RE, Brindis RG, et al. A contemporary overview of percutaneous coronary interventions. The American College of Cardiology-National Cardiovascular Data Registry (ACC-NCDR). J Am Coll Cardiol. 2002;39:1096–103.

    Article  PubMed  Google Scholar 

  34. Cavender MA, Joynt KE, Parzynski CS, et al. State mandated public reporting and outcomes of percutaneous coronary intervention in the United States. Am J Cardiol. 2015;115:1494–501.

    Article  PubMed  Google Scholar 

  35. Taggart DP. PCI or CABG in coronary artery disease? Lancet. 2009;373:1150–2.

    Article  PubMed  Google Scholar 

  36. Deb S, Wijeysundera HC, Ko DT, Tsubota H, Hill S, Fremes SE. Coronary artery bypass graft surgery vs percutaneous interventions in coronary revascularization: a systematic review. JAMA. 2013;310:2086–95.

    Article  CAS  PubMed  Google Scholar 

  37. Harrington RA. Selecting revascularization strategies in patients with coronary disease. N Engl J Med. 2015;372:1261–3.

    Article  PubMed  Google Scholar 

  38. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118:564–78.

    Article  CAS  PubMed  Google Scholar 

  39. McPherson R. Chromosome 9p21 and coronary artery disease. N Engl J Med. 2010;362:1736–7.

    Article  CAS  PubMed  Google Scholar 

  40. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen GQ, Li L, Rao S, et al. Four SNPs on chromosome 9p21 in a South Korean population implicate a genetic locus that confers high cross-race risk for development of coronary artery disease. Arterioscler Thromb Vasc Biol. 2008;28:360–5.

    Article  CAS  PubMed  Google Scholar 

  42. Dandona S, Stewart AF, Chen L, et al. Gene dosage of the common variant 9p21 predicts severity of coronary artery disease. J Am Coll Cardiol. 2010;56:479–86.

    Article  CAS  PubMed  Google Scholar 

  43. Varani E, Balducelli M, Aquilina M, et al. Single or multivessel percutaneous coronary intervention in ST-elevation myocardial infarction patients. Catheter Cardiovasc Interv. 2008;72:927–33.

    Article  PubMed  Google Scholar 

  44. Hoppmann P, Erl A, Türk S, et al. No association of chromosome 9p21.3 variation with clinical and angiographic outcomes after placement of drug-eluting stents. JACC Cardiovasc Interv. 2009;2:1149–55.

    Article  PubMed  Google Scholar 

  45. Mega JL, Stitziel NO, Smith JG, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385:2264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shieh Y, Eklund M, Madlensky L, et al. Breast cancer screening in the precision medicine era: risk-based screening in a population-based trial. J Natl Cancer Inst. 2017;109. https://doi.org/10.1093/jnci/djw290. Print 2017 Jan

  47. Näslund-Koch C, Nordestgaard BG, Bojesen SE. Common breast cancer risk alleles and risk assessment: a study on 35 441 individuals from the Danish general population. Ann Oncol. 2017;28:175–81.

    PubMed  Google Scholar 

  48. Cuzick J, Brentnall AR, Segal C, et al. Impact of a panel of 88 single nucleotide polymorphisms on the risk of breast cancer in high-risk women: Results from two randomized tamoxifen prevention trials. J Clin Oncol. 2017;35:743–50.

    Article  CAS  PubMed  Google Scholar 

  49. Khera AV, Emdin CA, Drake I, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375:2349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Natarajan P, Young R, Stitziel NO, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation. 2017;135:2091–101.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pranavchand R, Kumar AS, Reddy BM. Reddy, Genetic determinants of clinical heterogeneity of the coronary artery disease in the population of Hyderabad, India. Hum Genomics. 2017;11:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robinson CL, Jouni H, Kruisselbrink TM, et al. Disclosing genetic risk for coronary heart disease: effects on perceived personal control and genetic counseling satisfaction. Clin Genet. 2016;89:251–7.

    Article  CAS  PubMed  Google Scholar 

  53. Kullo IJ, Jouni H, Austin EE, et al. Incorporating a genetic risk score Into coronary heart disease risk estimates: effect on low-density Lipoprotein Cholesterol Levels (the MI-GENES Clinical Trial). Circulation. 2016;133:1181–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bloss CS, Schork NJ, Topol EJ. Effect of direct-to-consumer genomewide profiling to assess disease risk. N Engl J Med. 2011;364:524–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paynter NP, Ridker PM, Chasman DI. Are genetic tests for atherosclerosis ready for routine clinical use? Circ Res. 2016;118:607–19.

    Article  CAS  PubMed  Google Scholar 

  56. Nelson CP, Goel A, Butterworth AS, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49:1385–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ruel.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, S.K., Sun, L. & Ruel, M. Genetics, coronary artery disease, and myocardial revascularization: will novel genetic risk scores bring new answers?. Indian J Thorac Cardiovasc Surg 34 (Suppl 3), 213–221 (2018). https://doi.org/10.1007/s12055-017-0635-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-017-0635-6

Keywords

Navigation