Skip to main content

Advertisement

Log in

Heat Roadmap Europe: strategic heating transition typology as a basis for policy recommendations

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

In order to support European-wide transition of heating systems, it is useful to categorise the types of transitions that are necessary. Coherent actions are needed at (supra-)national level to support transition aligned with the energy efficiency first principle and long-term development of a smart energy system. Owing to the decentralised nature of heating, transition must also reflect particular local circumstances. This article uses commonalities between countries to create a representative typology, which can suggest appropriate policies for transition. Following the energy efficiency first principle, transition should include supply-side and demand-side efficiency to ensure coherency and efficient use of resources. Their comparative analysis supports implementing the energy efficiency first principle locally, and a more coherent European strategy for the heating sector. Methodologically, 14 national heating strategies are considered which include current and future energy system developments, demand- and supply side energy efficiency, hectare-level thermal mapping and energy system analysis. Four heat sector types are proposed and discussed. These are (1) extant heat planning traditions, aiming for more efficiency and integration; (2) extant heating infrastructure, aiming to refurbish and upgrade both building stock and existing heating infrastructure; (3) existing gas infrastructure, requiring radical transition; (4) and those without strong historic heat planning traditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bartiaux , F., Gram-Hanssen, K., Fonseca , P., Ozolia , L., & Christensen, T. H. (2011). A practice-theory based analysis of energy renovations in four European countries. In Energy Efficiency First: The Foundation of a LowCarbon Society. : Proceedings of ECEEE 2011 Summerstudy, 6–11 June European Council for an Energy Efficient Economy, ECEEE. http://proceedings.eceee.org/

  • Bertelsen, N., & Mathiesen, B. V. (2020). EU-28 residential heat supply and consumption: Historical development and status. Energies, 13, 1894. https://doi.org/10.3390/en13081894

    Article  Google Scholar 

  • Bertelsen, N., Mathiesen, B.V., Paardekooper, S. (2021). Implementing large-scale heating infrastructures: Experiences from successful planning of district heating and natural gas grids in Denmark, the United Kingdom, and the Netherlands. Submitted to Energy Efficiency

  • Cenian, A., Dzierzgowski, M., Pietrzykowski, B. (2019). On the road to low temperature district heating. Journal of Physics: Conference Series 1398 (012002). https://doi.org/10.1088/1742-6596/1398/1/012002

  • Cirman, A., Mandic, S., & Zoric, J. (2013). Decisions to renovate: Identifying key determinants in central and eastern European post-socialist countries. Urban Studies, 50(16), 3378–3393. https://doi.org/10.1177/0042098013482509

    Article  Google Scholar 

  • Colmenar-Santos, A., Rosales-Asensio, E., Borge-Diez, D., Blanes-Peiró, J.J. (2016) District heating and cogeneration in the EU-28: Current situation, potential and proposed energy strategy for its generalisation. Renewable and Sustainable Energy Reviews, 62 (621–639)

  • Connolly, D., Lund, H., Mathiesen, B.V., Werner, S., Möller, B., Persson, U., Boermans, T., Trier, D., Østergaard, P.A., Nielsen, S. (2014). Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 65(475–489). https://doi.org/10.1016/J.ENPOL.2013.10.035.

  • David, A., Mathiesen, B.V., Averfalk, H., Werner, S., Lund, H., 2017. Heat Roadmap Europe: Large-scale electric heat pumps in district heating systems. Energies, 10(578). https://doi.org/10.3390/en10040578

  • Delmastro, C., Martinsson, F., Dulac, J., Corgnati, S.P. (2017). Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm. Energy 134 (1209–1220). https://doi.org/10.1016/j.energy.2017.08.019

  • Denarie, A., Calderoni, M., Muschera, M. (2017). Technical, financial and urban potentials for solar district heating in Italy. In Bidello, A., Vettorato, D., Stephens R., Elisei., P (Eds). Smart and Sustainable Planning for Cities and Regions - Results of SSPCR 2015 (pp 15–31), Springer, Switzerland.

  • Dittmann, F., Rivière, P., Stabat, P., Paardekooper, S., Connolly, D. (2016). Space Cooling Technology in Europe. https://heatroadmap.eu/heating-and-cooling-energy-demand-profiles/ Accessed 15 December 2020

  • Dodds, P. E., Staffell, I., Hawkes, A. D., Li, F., Grunewald, P., McDowall, W., & Ekins, P. (2015). Hydrogen and fuel cell technologies for heating: A review. International Journal of Hydrogen Energy, 40(5), 2065–2083. https://doi.org/10.1016/j.ijhydene.2014.11.059

    Article  Google Scholar 

  • Dominikov, D.F., Bacekovic, I., Cosic, B., Krajacic, G., Puksec, T., Duic, N., Markovska, N. (2016). Zero carbon energy system of South East Europe in 2050. Applied Energy 184(1517–1528). http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2016.03.046

  • Drysdale, D., Mathiesen, B. V., & Paardekooper, S. (2019). Transitioning to a 100% renewable energy system in Denmark by 2050: Assessing the impact from expanding the building stock at the same time. Energy Efficiency, 12, 37–55. https://doi.org/10.1007/s12053-018-9649-1

    Article  Google Scholar 

  • Dzebo, A., & Nykvist, B. (2017). A new regime and then what? Cracks and tensions in the socio-technical regime of the Swedish heat energy system. Energy Research & Social Science, 29, 113–122. https://doi.org/10.1016/j.erss.2017.05.018

    Article  Google Scholar 

  • Euroheat and Power (2019). District Heating and Cooling: Country by Country 2017 Survey. Euroheat and Power: Brussels, Belgium.

  • European Commission (2016). An EU heating and cooling strategy: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. https://ec.europa.eu/energy/sites/ener/files/documents/1_EN_ACT_part1_v14.pdf. Accessed 11 December 2020.

  • Filogamo, L., Peri, G., Rizzo, G., Giaccone, A., (2014). On the classification of large residential buildings stocks by sample typologies for energy planning purposes. Applied Energy, 135(825–835). https://doi.org/10.1016/j.apenergy.2014.04.002.

  • Fleiter, T., Elsland, R., Herbst, A., Manz, P., Popovski, E., Rehfeldt, M., Reiter, U., Catenazzi, G., Jakob, M., Harmsen, R., Rutten, C., Dittman, F., Rivière, P., Stabat, P. (2017a). Baseline scenario of the heating and cooling demand in buildings and industry in the 14 MSs until 2050. https://heatroadmap.eu/project-reports/ Accessed 15 December 2020.

  • Fleiter, T., Elsland, R., Rehfeldt, M., Steinbach, J., Reiter, U., Catenazzi, G., Jakob, M., Rutten, C., Harmsen, R., Dittman, F., Rivière, P., Stabat, P. (2017b) Profile of heating and cooling demand in 2015. https://heatroadmap.eu/project-reports/ Accessed 15 December 2020

  • Fleiter, T., Elsland, R., Rehfeldt, M., Steinbach, J., Reiter, U., Catenazzi, G., Jakob, M., Rutten, C., Harmsen, R., Dittman, F., Rivière, P., Stabat, P. (2017c). Data annex to Profile of heating and cooling demand in 2015. https://heatroadmap.eu/heating-and-cooling-energy-demand-profiles/ Accessed 15 December 2020

  • Gram-Hanssen, K. (2013). Efficient technologies or user behaviour, which is the more important when reducing households’ energy consumption? Energy Efficiency, 6(3), 447–457.

    Article  Google Scholar 

  • Gross, R., & Hanna, R. (2019). Path dependency in provision of domestic heating. Nature Energy, 4, 358–364. https://doi.org/10.1038/s41560-019-0383-5

    Article  Google Scholar 

  • Hansen, K., Connolly, D., Lund, H., Drysdale, D., & Thellufsen, J. Z. (2016). Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat. Energy, 115(3), 1663–1671. https://doi.org/10.1016/j.energy.2016.06.033

    Article  Google Scholar 

  • Harmsen, R., van Zuijlen, B., Manz, P., Fleiter, T., Elsland, R., Reiter, U., Palavios, A., Vatenazzi, G., Jakob, M. (2018). Report on cost-curves for built environment and industrial energy efficiency options. https://heatroadmap.eu/project-reports/ Accessed 15 December 2020.

  • Hawkey, D., & Webb, J. (2014). District energy development in liberalised markets: Situating UK heat network development in comparison with Dutch and Norwegian case studies. Technology Analysis and Strategic Management, 26(10), 1228–1241. https://doi.org/10.1080/09537325.2014.971001

    Article  Google Scholar 

  • Helin, K., Syri, S., Zakeri, B., 2018. Improving district heat sustainability and competitiveness with heat pumps in the future Nordic energy system. 16th International Symposium on District Heating and Cooling, DHC2018, 9–12 September 2018, Hamburg, Germany. Energy Procedia 149(455–464). https://doi.org/10.1016/j.egypro.2018.08.210

  • Johansson, P. (2021). Heat pumps in Sweden – A historical review. Energy, 229, 120683. https://doi.org/10.1016/j.energy.2021.120683

    Article  Google Scholar 

  • Korberg, A.D., Skov, I.R., Mathiesen, B.V. (2020). The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark. Energy, 119(117426). https://doi.org/10.1016/j.energy.2020.117426

  • Kozarcanin, S., Hanna, R., Staffell, I., Gross, R., & Andresen, G. B. (2020). Impact of climate change on the cost-optimal mix of decentralised heat pump and gas boiler technologies in Europe. Energy Policy, 140, 111386. https://doi.org/10.1016/j.enpol.2020.111386

    Article  Google Scholar 

  • Lizana, J., Ortiz, C., Soltero, V.M., Chacartegui, R. (2017). District heating systems based on low-carbon energy technologies in Mediterranean areas. Energy, 120(397–416). https://doi.org/10.1016/j.energy.2016.11.096

  • Loga, T., Stein, B., Diefenbach, N. (2016). TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable, Energy and Buildings 132(4–12). https://doi.org/10.1016/j.enbuild.2016.06.094.

  • Lund, H., Andersen, A. N., Østergaard, P. A., Mathiesen, B. V., & Connolly, D. (2012). From electricity smart grids to smart energy systems - A market operation based approach and understanding. Energy, 42, 96–102. https://doi.org/10.1016/j.energy.2012.04.003

    Article  Google Scholar 

  • Lund, H., Arler, F., Østergaard, P.A., Hvelplund, F., Connolly, D., Mathiesen, B.V., Karnøe, P. (2017). Simulation versus optimisation: theoretical positions in energy system modelling. Energies 10, 1e17. https://doi.org/10.3390/en10070840.

  • Lund, H., Thellufsen, J. Z., Østergaard, P. A., Sorknæs, P., Ridjan Skov, I., & Mathiesen, B. V. (2021). EnergyPLAN – Advanced analysis of smart energy systems. Smart Energy, 1, 100007. https://doi.org/10.1016/j.segy.2021.100007

    Article  Google Scholar 

  • Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J.E., Hvelplund, F., Mathiesen, B.V. (2014). 4th Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy systems. Energy 68 (1–11). https://doi.org/10.1016/j.energy.2014.02.089

  • Lund, H., Østergaard, P.A., Chang, M., Werner, S., Svendsen, S., Sorknæs, P., Thorsen, J.E., Hvelplund, F., Gram Mortensen, B.O., Mathiesen, B.V., Bojesen, C., Duic, N., Zhang, X., Möller, B. (2018) The status of 4th generation district heating: Research and results, Energy,164 (147–159) https://doi.org/10.1016/j.energy. 2018.08.206

  • Lund, R., and Mathiesen, B.V. Large combined heat and power plants in sustainable energy systems. Applied Energy, 142 (389–395). https://doi.org/10.1016/j.apenergy.2015.01.013.

  • Mathiesen, B. V., Lund, H., & Connolly, D. (2012). Limiting biomass consumption for heating in 100% renewable energy systems. Energy, 48(1), 160–168.

    Article  Google Scholar 

  • Michelsen, C.C., and Madlener, R. (2012). Homeowners’ preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany. Energy Economics 34(1271–1283). https://doi.org/10.1016/j.eneco.2012.06.009

  • Möller, B., Wiechers, B., Persson, U., Grundahl, L., Lund, R.S., Mathiesen, B.V. (2019) Heat Roadmap Europe: Towards EU-wide, local heat supply strategies. Energy 177 (554–564) https://doi.org/10.1016/j.energy.2019.04.098.

  • Mortensen, A.W., Mathiesen, B.V., Hansen, A.B., Pedersen, S.L., Grandal, R.D., Wenzel, H. (2020). The role of electrification and hydrogen in breaking the biomass bottleneck of the renewable energy system – A study on the Danish energy system. Applied Energy, 275(115331). https://doi.org/10.1016/j.apenergy.2020.115331

  • Nijs, W., Ruiz Castelló., P., Hidalgo González, I. (2017). Baseline scenario of the total energy system up to 2050: JRC-EU-TIMES model outputs for the 14 MS and the EU. https://heatroadmap.eu/project-reports/ Accessed 15 December 2020.

  • Paardekooper, S., Lund, R.S., Mathiesen, B.V., Chang, M., Petersen, U.R., Grundahl, L.,David, A., Dahlbæk, J., Kapetanakis, J., Lund, H., Bertelsen, N., Hansen, K., Drysdale, D., Persson, U. (2018a). Quantifying the Impact of Low-Carbon Heating and Cooling Roadmaps. Heat Roadmap Europe. https://heatroadmap.eu/roadmaps/. Accessed 15 December 2020

  • Paardekooper, S., Lund, R.S., Mathiesen, B.V., Chang, M., Petersen, U.R., Grundahl, L.,David, A., Dahlbæk, J., Kapetanakis, J., Lund, H., Bertelsen, N., Hansen, K., Drysdale, D., Persson, U. (2018b-o). Quantifying the Impact of Low-Carbon Heating and Cooling Roadmaps. Heat Roadmap Austria/Belgium/Czech Republic/Finland/France/Germany/Hungary/Italy/Netherlands/Poland/Romania/Spain/Sweden/United Kingdom. https://heatroadmap.eu/roadmaps/. Accessed 15 December 2020

  • Paardekooper, S., Lund, R.S., Mathiesen, B.V., Chang, M., Petersen, U.R., Grundahl, L.,David, A., Dahlbæk, J., Kapetanakis, J., Lund, H., Bertelsen, N., Hansen, K., Drysdale, D., Persson, U. (2018p). Heat Roadmap Europe 4 Energy models for 14 EU MSs . https://heatroadmap.eu/energy-models/ Accessed 15 December 2020

  • Paardekooper, S., Lund, R., & Lund, H. (2019). Smart Energy Systems. In R. E. Hester, & R. M. Harrison (Eds.), Energy Storage Options and Their Environmental Impact (pp. 228–260). Royal Society of Chemistry. Issues in Environmental Science and Technology, No. 46, Vol.. 2019-January https://doi.org/10.1039/9781788015530-00228

  • Paiho, S., Ketomäki, J., Kannari, L., Häkkinen, T., Shemeikka, J. (2019). A new procedure for assessing the energy-efficient refurbishment of buildings on district scale. Sustainable Cities and Society 46 (101454). https://doi.org/10.1016/j.scs.2019.101454

  • Pearson, P. J. G., & Arapostathis, S. (2017). Two centuries of innovation, transformation and transition in the UK gas industry: Where next? Proceedings of the Institution of Mechanical Engineers, Part a: Journal of Power and Energy, 231, 478–497. https://doi.org/10.1177/0957650917693482

    Article  Google Scholar 

  • Persson, U., Wiechers, E., Moller, B. (2019). Heat Roadmap Europe: Heat distribution costs. Energy, 176 (604–622) https://doi.org/10.1016/j.energy.2019.03.189

  • Petrovic, S.N., Karlsson, K.B. 2016. Residential heat pumps in the future Danish energy system. Energy, 114(787–797) https://doi.org/10.1016/j.energy.2016.08.007

  • Roberts, C., & Geels, F. W. (2019). Conditions and intervention strategies for the deliberate acceleration of socio-technical transitions: Lessons from a comparative multi-level analysis of two historical case studies in Dutch and Danish heating. Technology Analysis & Strategic Management, 31, 1081–1103. https://doi.org/10.1080/09537325.2019.1584286

    Article  Google Scholar 

  • Regulation 2018/1999 on the Governance of the Energy Union and Climate Action, (…). European Parliament, Council of the European Union. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1999&from=EN Accessed: 09 June 2021.

  • D Rutz J Worm C Doczekal A Kazagic N Duic N Markovska IR Batas Bjelic R Sunko D Tresnjo A Merzic B Doracic V Gjorgievski R Janssen E Redzic R Zweiler T Puksec B SunkoRajakovic 2019 Transition towards a sustainable heating and cooling sector - Case study of southeast European countries Thermal Science 23 6A 3293 3306 https://doi.org/10.2298/TSCI190107269R

  • Sandberg, E., Sneum, D.M., Trømborg, E. (2018). Framework conditions for Nordic district heating - Similarities and differences, and why Norway sticks out. Energy 149(105–119). https://doi.org/10.1016/j.energy.2018.01.148

  • Tirado Herrero, S., Ürge-Vorsatz, D. (2012). Trapped in the heat: A post-communist type of fuel poverty. Energy Policy, 49(60–68). https://doi.org/10.1016/j.enpol.2011.08.067.

  • Werner, S., (2010). Best practise support schemes, Ecoheat4EU. https://www.euroheat.org/wp-content/uploads/2016/04/Ecoheat4EU_Best_Practise_Support_Schemes.pdf Accessed 15 December 2020.

  • Werner, S. (2017) International review of district heating and cooling. Energy 137 (617–631). https://doi.org/10.1016/j.energy.2017.04.045.Dolowitz, D.P., March, D. (2000). Learning from Abroad: The Role of Policy Transfer in Contemporary Policy-Making. Governance: An International Journal of Policy and Administration, 13(1), 5–24). https://doi.org/10.1111/0952-1895.00121

  • Verbong, G.P.J., and Schippers, J.L. (2000). De revolutie van Slochteren. In Techniek in Nederland in de twintigste eeuw. Deel 2. Delfstoffen, energie, chemie, Schot, J.W., Lintsen, H.W., Rip, A., De la Bruhèze, A.A.A. (Eds) 202–219. Eindhoven: Stichting Historie der Techniek / Walburg Pers, Zutphen.

  • Zangheri, P., Armani, R., Pietrobon, M., & Pagliano, L. (2018). Identification of cost-optimal and NZEB refurbishment levels for representative climates and building typologies across Europe. Energy Efficiency, 11, 337–369. https://doi.org/10.1007/s12053-017-9566-8

    Article  Google Scholar 

Download references

Acknowledgements

The work presented builds heavily on the data and results generated in the Heat Roadmap Europe project, which was funded by the European Union’s Horizon 2020 program (GA 695989), and research funded by the Innovation Fund Denmark, grant number 6154-00022B RE-INVEST — Renewable Energy Investment Strategies — A two-dimensional interconnectivity approach project. The authors wish to thank the partners for their collaboration in this project. We also thank the reviewers for their substantial and constructive suggestions, which have helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SP and HL. Methodology: SP. Formal analysis and investigation: SP. Data curation: SP. Writing—original draft preparation: SP. Writing—review and editing: SP, HL, JZT, NB, and BVM. Supervision: HL and JZT. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Susana Paardekooper.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Making the Energy Efficiency First Principle Operational

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paardekooper, S., Lund, H., Thellufsen, J.Z. et al. Heat Roadmap Europe: strategic heating transition typology as a basis for policy recommendations. Energy Efficiency 15, 32 (2022). https://doi.org/10.1007/s12053-022-10030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12053-022-10030-3

Keywords

Navigation