Advertisement

Energy Efficiency

, Volume 12, Issue 5, pp 1399–1428 | Cite as

A review on energy efficiency and demand response with focus on small and medium data centers

  • Thiago Lara VasquesEmail author
  • Pedro Moura
  • Aníbal de Almeida
Review Article
  • 292 Downloads

Abstract

Data centers are the backbone of a growing number of activities in modern economies. However, the large increase of digital content, big data, e-commerce, and Internet traffic is also making data centers one of the fastest-growing users of electricity. The total energy consumption of data centers corresponded to almost 1.5% of the global electricity consumption and has an approximated annual growth rate of 4.3%. Therefore, it is very important to increase the energy efficiency in data centers with actions such as power usage management, server consolidation, energy-efficient components and systems, as well as demand response programs and renewable energy sources. Small and medium data centers account for more than 50% of the total electricity consumption in this sector. In fact, surveys indicate that this data center profile waste more energy than larger facilities. Nevertheless, existing studies tend to be focused on the energy-related issues for large data centers rather than small and medium data centers. Therefore, through a meticulous state-of-the-art literature review of data centers energy efficiency and demand response perspectives, this paper aims to present how an intensive energy consumer, such as small and medium data centers, can become more efficient from the energy point of view and how they can take advantage of demand response programs to decrease costs and to cooperate with the grid to ensure higher reliability and sustainable development goals.

Keywords

Data centers Information and communication technologies Energy efficiency Demand response 

Notes

Funding

The present work was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil).

References

  1. Aghaei, J., & Alizadeh, M. I. (2013). Demand response in smart electricity grids equipped with renewable energy sources: a review. Renewable and Sustainable Energy Reviews, 18, 64–72.  https://doi.org/10.1016/j.rser.2012.09.019.CrossRefGoogle Scholar
  2. Ahmad, R. W., Gani, A., Hamid, S. H. A., Shiraz, M., Yousafzai, A., & Xia, F. (2015). A survey on virtual machine migration and server consolidation frameworks for cloud data centers. Journal of Network and Computer Applications, pp., 52, 11–25.  https://doi.org/10.1016/j.jnca.2015.02.002.CrossRefGoogle Scholar
  3. Ahn, J. H., Jouppi, N. P., Kozyrakis, C., Leverich, J., & Schreiber, R. S. (2009). Future scaling of processor-memory interfaces. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis - SC ‘09 (p. 1). New York: ACM Press.  https://doi.org/10.1145/1654059.1654102.Google Scholar
  4. Alkharabsheh, S., Fernandes, J., Gebrehiwot, B., Agonafer, D., Ghose, K., Ortega, A., Joshi, Y., & Sammakia, B. (2015). A brief overview of recent developments in thermal management in data centers. Journal of Electronic Packaging, 137(4), 040801.  https://doi.org/10.1115/1.4031326.CrossRefGoogle Scholar
  5. Amur, H., Cipar, J., & Gupta, V. (2010). Robust and flexible power-proportional storage. In Proceedings of the 1st ACM symposium on Cloud computing - SoCC ‘10 (pp. 217–228).  https://doi.org/10.1145/1807128.1807164.CrossRefGoogle Scholar
  6. Andrén, F. P., Strasser, T. and Kastner, W. (2016) ‘Applying the SGAM methodology for rapid prototyping of smart grid applications’, IECON Proceedings (Industrial Electronics Conference), pp. 3812–3818.  https://doi.org/10.1109/IECON.2016.7794057.
  7. Ardagna, D., Panicucci, B., Trubian, M., & Zhang, L. (2012). Energy-aware autonomic resource allocation in multitier virtualized environments. IEEE Transactions on Services Computing, 5(1), 2–19.  https://doi.org/10.1109/TSC.2010.42.CrossRefGoogle Scholar
  8. Arianyan, E., Taheri, H., & Khoshdel, V. (2017). Novel fuzzy multi objective DVFS-aware consolidation heuristics for energy and SLA efficient resource management in cloud data centers. Journal of Network and Computer Applications, 78, 43–61.  https://doi.org/10.1016/j.jnca.2016.09.016.CrossRefGoogle Scholar
  9. ASHRAE (2011) ‘2011 Gaseous and particulate contamination guidelines for data centers’, American Society of Heating, Refrigerating and Air-Conditioning Engineers, pp. 1–22.Google Scholar
  10. Avgerinou, M., Bertoldi, P. and Castellazzi, L. (2017) ‘Trends in data centre energy consumption under the European code of conduct for data centre energy efficiency’, Energies, 10(10).  https://doi.org/10.3390/en10101470.
  11. Barroso, L. A., & Hölzle, U. (2007). The case for energy-proportional computing. Computer, 40(12), 33–37.  https://doi.org/10.1109/MC.2007.443.CrossRefGoogle Scholar
  12. Basmadjian, R., Müller, L., & De Meer, H. (2015). Data centres’ power profile selecting policies for demand response: insights of green supply demand agreement. Ad Hoc Networks, 25(PB), 581–594.  https://doi.org/10.1016/j.adhoc.2014.11.007.CrossRefGoogle Scholar
  13. Beloglazov, A., & Buyya, R. (2013). Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints. IEEE Transactions on Parallel and Distributed Systems, 24(7), 1366–1379.  https://doi.org/10.1109/TPDS.2012.240.CrossRefGoogle Scholar
  14. Bennett, D. and Delforge, P. (2012) ‘Small server rooms, big energy savings opportunities and barriers to energy efficiency on the small server room market’, NRDC, (February).Google Scholar
  15. Bonetto, E., Finamore, A., Mellia, M., & Fiandra, R. (2014). Energy efficiency in access and aggregation networks: from current traffic to potential savings. Computer Networks, 65, 151–166.  https://doi.org/10.1016/j.comnet.2014.03.008.CrossRefGoogle Scholar
  16. Bostoen, T., Mullender, S., & Berbers, Y. (2013). Power-reduction techniques for data-center storage systems. ACM Computing Surveys, 45(3), 1–38.  https://doi.org/10.1145/2480741.2480750.CrossRefGoogle Scholar
  17. Boulos, S., Nuttall, C., Harrison, B., Moura, P. and Jehle, C. (2014) ErP lot 27—uninterruptible power supplies: preparatory study—final report. Ricardo-AEA, Intertek, ISR – University of Coimbra.Google Scholar
  18. Brocanelli M, Li S, Wang X, and Zhang W. (2014) ‘Maximizing the revenues of data centers in regulation market by coordinating with electric vehicles’, Sustainable Computing: Informatics and Systems. Elsevier Inc., pp. 1–13.  https://doi.org/10.1016/j.suscom.2014.03.004, 2015.
  19. Calheiros, R. N., Ranjan, R., De Rose, C. A. F. and Buyya, R. (2009) ‘CloudSim: a novel framework for modeling and simulation of cloud computing infrastructures and services’, arXiv preprint arXiv:0903.2525, p. 9.Google Scholar
  20. Camacho, J., Zhang, Y., Chen, M. and Chiu, D. M. (2014) ‘Balance your bids before your bits: the economics of geographic load-balancing’, Proc. of the 5th Int. Conf. on Future Energy Systems (ACM e-Energy), pp. 75–85.  https://doi.org/10.1145/2602044.2602068.
  21. Capozzoli, A., Chinnici, M., Perino, M. and Serale, G. (2015) ‘Review on performance metrics for energy efficiency in data center: the role of thermal management’, Energy Efficient Data Centers, pp. 135–151.  https://doi.org/10.1007/978-3-319-15786-3_9.
  22. Carreiro, A. M., Jorge, H. M., & Antunes, C. H. (2017). Energy management systems aggregators: a literature survey. Renewable and Sustainable Energy Reviews, 73, 1160–1172.  https://doi.org/10.1016/j.rser.2017.01.179.CrossRefGoogle Scholar
  23. Castro, P. H. P., Cardoso, K. V and Corrêa, S. (2013) ‘Uma Abordagem Baseada no Consumo de CPU e RAM para a Eficiencia Energetica em Centros de Dados para Computação em Nuvem’, Wscad-Ssc 2013, (February), p. 8.  https://doi.org/10.13140/2.1.4681.0242.
  24. Cecati, C., Mokryani, G., Piccolo, A. and Siano, P. (2010) ‘An overview on the smart grid concept’, IECON Proceedings (Industrial Electronics Conference), pp. 3322–3327.  https://doi.org/10.1109/IECON.2010.5675310.
  25. Chen, N., Ren, X., Ren, S. and Wierman, A. (2015) ‘Greening multi-tenant data center demand response’, Performance Evaluation. Elsevier B.V., 91, pp. 229–254.  https://doi.org/10.1016/j.peva.2015.06.014.
  26. Chen, T., Gao, X., & Chen, G. (2016a). The features, hardware, and architectures of data center networks: a survey. Journal of Parallel and Distributed Computing, 96, 45–74.  https://doi.org/10.1016/j.jpdc.2016.05.009.CrossRefGoogle Scholar
  27. Chen, T., Zhang, Y., Wang, X., & Giannakis, G. B. (2016b). Robust workload and energy management for sustainable data centers. IEEE Journal on Selected Areas in Communications, 34(3), 651–664.  https://doi.org/10.1109/JSAC.2016.2525618.CrossRefGoogle Scholar
  28. Christantoni, D., Oxizidis, S., Flynn, D., & Finn, D. P. (2016). Implementation of demand response strategies in a multi-purpose commercial building using a whole-building simulation model approach. Energy and Buildings, 131, 76–86.  https://doi.org/10.1016/j.enbuild.2016.09.017.CrossRefGoogle Scholar
  29. Cioara, T., Anghel, I., Bertoncini, M., Salomie, I., Arnone, D., Mammina, M., Velivassaki, T.-H., & Antal, M. (2016). Optimized flexibility management enacting data centres participation in smart demand response programs. Future Generation Computer Systems., 78, 330–342.  https://doi.org/10.1016/j.future.2016.05.010.CrossRefGoogle Scholar
  30. Craig-wood, K., Krause, P. and Mason, A. (2010) ‘Green ICT: oxymoron or call to innovation?’, Transport, (Ict), pp. 978–981.  https://doi.org/10.5176/978-981-08-7240-3.
  31. Dai, J., Das, D., & Pecht, M. (2012a). A multiple stage approach to mitigate the risks of telecommunication equipment under free air cooling conditions. Energy Conversion and Management, 64, 424–432.  https://doi.org/10.1016/j.enconman.2012.06.018.CrossRefGoogle Scholar
  32. Dai, J., Das, D., & Pecht, M. (2012b). Prognostics-based risk mitigation for telecom equipment under free air cooling conditions. Applied Energy, 99, 423–429.  https://doi.org/10.1016/j.apenergy.2012.05.055.CrossRefGoogle Scholar
  33. Dai, J., Das, D., Ohadi, M., & Pecht, M. (2013). Reliability risk mitigation of free air cooling through prognostics and health management. Applied Energy, 111, 104–112.  https://doi.org/10.1016/j.apenergy.2013.04.047.CrossRefGoogle Scholar
  34. Dargie, W. (2014) ‘Estimation of the cost of VM migration’, Proceedings - International Conference on Computer Communications and Networks, ICCCN.  https://doi.org/10.1109/ICCCN.2014.6911756.
  35. Dayarathna, M., Wen, Y., & Fan, R. (2016). Data center energy consumption modeling: a survey. IEEE Communications Surveys & Tutorials, 18(1), 732–794.  https://doi.org/10.1109/COMST.2015.2481183.CrossRefGoogle Scholar
  36. Delforge, P. (2014) ‘America’s data centers are wasting huge amounts of energy’, Natural Resources Defense Council (NRDC), IB:14-08-a(august), pp. 1–5.Google Scholar
  37. Deng, Y. (2011). What is the future of disk drives, death or rebirth? ACM Computing Surveys, 43(3), 1–27.  https://doi.org/10.1145/1922649.1922660.CrossRefGoogle Scholar
  38. Dhiman, G., Marchetti, G., & Rosing, T. S. (2010). VGreen: a system for energy-efficient management of virtual machines. ACM Transactions on Design Automation of Electronic Systems, 16(1), 1–27.  https://doi.org/10.1145/1870109.1870115.CrossRefGoogle Scholar
  39. Dreibholz, T., Becke, M. and Adhari, H. (2007) ‘Report to congress on server and data center energy efficiency public law 109-431’, tdr.wiwi.uni-due.de, 109, p. 431.Google Scholar
  40. Ebrahimi, K., Jones, G. F., & Fleischer, A. S. (2014). A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable and Sustainable Energy Reviews, 31, 622–638.  https://doi.org/10.1016/j.rser.2013.12.007.CrossRefGoogle Scholar
  41. Elnozahy, E. N., Kistler, M. and Rajamony, R. (2003) ‘Energy-efficient server clusters’, in, pp. 179–197.  https://doi.org/10.1007/3-540-36612-1_12.
  42. Emerson (2015) ‘Energy logic: reducing data center energy consumption by creating savings that cascade across systems’, White Paper, Emerson Network Power, pp. 1–21.Google Scholar
  43. Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart grid—the new and improved power grid: a survey. IEEE Communications Surveys & Tutorials, 14(4), 944–980.  https://doi.org/10.1109/SURV.2011.101911.00087.CrossRefGoogle Scholar
  44. Flanagan, C. (2013) ‘A data center perspective on demand response’, Data Centers Dynamics.Google Scholar
  45. Fridgen, G., Keller, R., Thimmel, M., & Wederhake, L. (2017). Shifting load through space—the economics of spatial demand side management using distributed data centers. Energy Policy, 109, 400–413.  https://doi.org/10.1016/j.enpol.2017.07.018.CrossRefGoogle Scholar
  46. Fulpagare, Y., & Bhargav, A. (2015). Advances in data center thermal management. Renewable and Sustainable Energy Reviews, 43, 981–996.  https://doi.org/10.1016/j.rser.2014.11.056.CrossRefGoogle Scholar
  47. Garimella, S. V., Persoons, T., Weibel, J. and Yeh, L. T. (2013) ‘Technological drivers in data centers and telecom systems: multiscale thermal, electrical, and energy management’, Applied Energy, pp. 66–80.  https://doi.org/10.1016/j.apenergy.2013.02.047.
  48. Ghatikar, G., Piette, M. A., Fujita, S., McKane, A., Dudley J. H., Radspieler, A., Mares, K. C. and Shroyer, D. (2010) Demand response and open automated demand response opportunities for data centers, Lawrence Berkeley National Laboratory.Google Scholar
  49. Ghatikar, G., Ganti, V. and Matson, N. (2012) Demand response opportunities and enabling technologies for data centers: findings from field studies, Lawrence Berkeley National Laboratory.Google Scholar
  50. Gils, H. C. (2014) Assessment of the theoretical demand response potential in Europe. Energy, 67, 1–18.  https://doi.org/10.1016/j.energy.2014.02.019.
  51. Grice, J. W., Dean, N. and Eddie, S. (2013) ‘Sustainable site selection: the convergence of data center site’, The Green Grid. Research Report, (Sustainable Site Selection), p. 20.Google Scholar
  52. Güngör, V. C., Sahin, D., Kocak, T., Ergüt, S., Buccella, C., Cecati, C., & Hancke, G. P. (2011). Smart grid technologies: communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 529–539.  https://doi.org/10.1109/TII.2011.2166794.CrossRefGoogle Scholar
  53. Gupta, M. and Singh, S. (2003) ‘Greening of the internet’, Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications - SIGCOMM ‘03, pp. 19–26.  https://doi.org/10.1145/863956.863959.
  54. Gupta, M. and Singh, S. (2007) ‘Using low-power modes for energy conservation in Ethernet LANs’, In IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications, pp. 2451–2455.  https://doi.org/10.1109/INFCOM.2007.299.
  55. Hammadi, A., & Mhamdi, L. (2014). A survey on architectures and energy efficiency in data center networks. Computer Communications, 40, 1–21.  https://doi.org/10.1016/j.comcom.2013.11.005.CrossRefGoogle Scholar
  56. Härder, T., Hudlet, V., Ou, Y. and Schall, D. (2011) ‘Energy efficiency is not enough, energy proportionality is needed!’, DASFAA Workshops, pp. 226–239.  https://doi.org/10.1007/978-3-642-20244-5.
  57. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S. and McKeown, N. (2010) ‘ElasticTree: saving energy in data center networks’, Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, pp. 17–17.  https://doi.org/10.1021/ci2004779.
  58. Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G. and Lawall, J. (2009) ‘Entropy: a consolidation manager for clusters’, Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution environments - VEE ‘09, p. 41.  https://doi.org/10.1145/1508293.1508300.
  59. Iec (2013) 'Uninterruptible power systems (UPS)—part 1: general and safety requirements for UPS.' International Electrotechnical Commission. Reference number. IEC 620401.Google Scholar
  60. International Energy Agency (2014) ‘Energy supply security 2014 Part 3’, Energy supply security: the emergency response of IEA countries—2014 Edition, pp. 1–105.Google Scholar
  61. Irwin, D., Sharma, N. and Shenoy, P. (2011) ‘Towards continuous policy-driven demand response in data centers’, Proceedings of the 2nd ACM SIGCOMM workshop on Green networking - GreenNets ‘11, p. 19.  https://doi.org/10.1145/2018536.2018541.
  62. Islam, M. A., Arafath, M. Y. and Hasan, M. J. (2015) ‘Design of DDR4 SDRAM controller’, 8th International Conference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow, ICECE 2014, pp. 148–151.  https://doi.org/10.1109/ICECE.2014.7026950.
  63. JEDEC (2017) ‘JEDEC DDR5 & NVDIMM-P standards under development’, JEDEC’s Server Forum.Google Scholar
  64. Jiang, T., Yu, L. and Cao, Y. (2015) Energy management of internet data centers in smart grid. Springer.  https://doi.org/10.1007/978-3-662-45676-7.
  65. Jin, M., Feng, W., Liu, P., Marnay, C., & Spanos, C. (2017a). MOD-DR: microgrid optimal dispatch with demand response. Applied Energy, 187, 758–776.  https://doi.org/10.1016/j.apenergy.2016.11.093.CrossRefGoogle Scholar
  66. Jin, M., Feng, W., Marnay, C., & Spanos, C. (2017b). Microgrid to enable optimal distributed energy retail and end-user demand response. Applied Energy., 210, 1321–1335.  https://doi.org/10.1016/j.apenergy.2017.05.103.CrossRefGoogle Scholar
  67. Johannah, J. J., Korah, R., Kalavathy, M., & Sivanandham. (2017). Standby and dynamic power minimization using enhanced hybrid power gating structure for deep-submicron CMOS VLSI. Microelectronics Journal, 62, 137–145.  https://doi.org/10.1016/j.mejo.2017.02.003.CrossRefGoogle Scholar
  68. Josh, W. and Delforge, P. (2014) Data center efficiency assessment: scaling up energy efficiency across the data center industry: evaluating key drivers and barriers. NRDC and Anthesis.Google Scholar
  69. Judge, J., Pouchet, J., Ekbote, A. and Dixit, S. (2008) ‘Reducing data center energy consumption’, ASHRAE Journal, 50(November).Google Scholar
  70. Khan, M. U. S., & Khan, S. U. (2015). Smart data center. In Handbook on data centers (pp. 247–262). New York: Springer New York.  https://doi.org/10.1007/978-1-4939-2092-1_7.Google Scholar
  71. Kim, J. (2016) Strong, thorough, and efficient memory protection against existing and emerging DRAM errors. University of Texas.Google Scholar
  72. Kim, J., Sabry, M. M., Ruggiero, M., & Atienza, D. (2015). Power-thermal modeling and control of energy-efficient servers and datacenters. In Handbook on data centers (pp. 857–913). New York: Springer New York.  https://doi.org/10.1007/978-1-4939-2092-1_29.Google Scholar
  73. Koomey. (2011). Growth in data center electricity use 2005 to 2010 (p. 3). Oakland: Analytics Press.  https://doi.org/10.1088/1748-9326/3/3/034008.Google Scholar
  74. Krzywda, J., Ali-Eldin, A., Carlson, T. E., Östberg, P.-O., & Elmroth, E. (2017). Power-performance tradeoffs in data center servers: DVFS, CPU pinning, horizontal, and vertical scaling. Future Generation Computer Systems., 81, 114–128.  https://doi.org/10.1016/j.future.2017.10.044.CrossRefGoogle Scholar
  75. Lee, K. P., & Chen, H. L. (2013). Analysis of energy saving potential of air-side free cooling for data centers in worldwide climate zones. Energy and Buildings, 64, 103–112.  https://doi.org/10.1016/j.enbuild.2013.04.013.CrossRefGoogle Scholar
  76. Lei, H., Wang, R., Zhang, T., Liu, Y., & Zha, Y. (2016). A multi-objective co-evolutionary algorithm for energy-efficient scheduling on a green data center. Computers and Operations Research, 75, 103–117.  https://doi.org/10.1016/j.cor.2016.05.014.MathSciNetCrossRefzbMATHGoogle Scholar
  77. Li, J., Bao, Z., & Li, Z. (2015). Modeling demand response capability by internet data centers processing batch computing jobs. IEEE Transactions on Smart Grid, 6(2), 737–747.  https://doi.org/10.1109/TSG.2014.2363583.CrossRefGoogle Scholar
  78. Lim, S.-H., Huh, J.-S., Kim, Y., & Das, C. R. (2011). Migration, assignment, and scheduling of jobs in virtualized environment. HotCloud, 2011, 1–5.Google Scholar
  79. Liu, Z., Wierman, A., Chen, Y., Razon, B. and Chen, N. (2013) ‘Data center demand response: avoiding the coincident peak via workload shifting and local generation’, Performance Evaluation. Elsevier B.V., 70(10), pp. 770–791.  https://doi.org/10.1016/j.peva.2013.08.014.
  80. Liu, Z., Liu, I., Low, S., & Wierman, A. (2014). Pricing data center demand response. Acm Sigmetrics, 42, 111–123.  https://doi.org/10.1145/2591971.2592004.CrossRefGoogle Scholar
  81. Lu, T., Pande, P. P., & Shirazi, B. (2016). A dynamic, compiler guided DVFS mechanism to achieve energy-efficiency in multi-core processors. Sustainable Computing: Informatics and Systems, 12, 1–9.  https://doi.org/10.1016/j.suscom.2016.04.003.Google Scholar
  82. Masanet, E. R., Brown, R. E., Shehabi, A., Koomey, J. G., & Nordman, B. (2011). Estimating the energy use and efficiency potential of U.S. data centers. Proceedings of the IEEE, 99, 1440–1453.  https://doi.org/10.1109/JPROC.2011.2155610.CrossRefGoogle Scholar
  83. Mazumdar, S., & Pranzo, M. (2017). Power efficient server consolidation for cloud data center. Future Generation Computer Systems, 70, 4–16.  https://doi.org/10.1016/j.future.2016.12.022.CrossRefGoogle Scholar
  84. Moreno-Munoz, A., De La Rosa, J. J. G., Pallarés-Lopez, V., Real-Calvo, R. J., & Gil-De-Castro, A. (2011). Distributed DC-UPS for energy smart buildings. Energy and Buildings, 43(1), 93–100.  https://doi.org/10.1016/j.enbuild.2010.08.018.CrossRefGoogle Scholar
  85. Moura, P., Nuttall, C., Harrison, B., Jehle, C., & de Almeida, A. (2016). Energy savings potential of uninterruptible power supplies in European Union. Energy Efficiency, 9(5), 993–1013.  https://doi.org/10.1007/s12053-015-9406-7.CrossRefGoogle Scholar
  86. Nathuji, R. and Schwan, K. (2007) ‘VirtualPower: coordinated power management in virtualized enterprise systems’, Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles - SOSP ‘07, p. 265.  https://doi.org/10.1145/1294261.1294287.
  87. Nedevschi, S., Popa, L., Iannaccone, G., Ratnasamy, S., & Wetherall, D. (2008). Reducing network energy consumption via sleeping and rate-adaptation. Symposium a quarterly journal in modern foreign literatures, 21(3), 323–336.  https://doi.org/10.11143/3471.
  88. Ni, J., & Bai, X. (2017). A review of air conditioning energy performance in data centers. Renewable and Sustainable Energy Reviews, 67, 625–640.  https://doi.org/10.1016/j.rser.2016.09.050.CrossRefGoogle Scholar
  89. Oconnell, N., Pinson, P., Madsen, H., & Omalley, M. (2014). Benefits and challenges of electrical demand response: a critical review. Renewable and Sustainable Energy Reviews, 39, 686–699.  https://doi.org/10.1016/j.rser.2014.07.098.CrossRefGoogle Scholar
  90. Oró, E., Depoorter, V., Garcia, A., & Salom, J. (2015). Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renewable and Sustainable Energy Reviews, 429, 445–445.  https://doi.org/10.1016/j.rser.2014.10.035.Google Scholar
  91. Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S. and Merchant, A. (2009) ‘Automated control of multiple virtualized resources’, Proceedings of the 4th ACM European conference on Computer systems, pp. 13–26.  https://doi.org/10.1145/1519065.1519068.
  92. Panajotovic, B., Jankovic, M. and Odadzic, B. (2011) ‘ICT and smart grid’, 2011 10th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, TELSIKS 2011 - Proceedings of Papers, pp. 118–121.  https://doi.org/10.1109/TELSKS.2011.6112018.
  93. Paterakis, N. G., Erdinç, O. and Catalão, J. P. S. (2017) ‘An overview of demand response: key-elements and international experience’, Renewable and Sustainable Energy Reviews, pp. 871–891.  https://doi.org/10.1016/j.rser.2016.11.167.
  94. Paul, D., De Zhong, W., & Bose, S. K. (2017). Demand response in data centers through energy-efficient scheduling and simple incentivization. IEEE Systems Journal, 11(2), 613–624.  https://doi.org/10.1109/JSYST.2015.2476357.CrossRefGoogle Scholar
  95. PIER (2008) ‘Uninterruptible power supplies: A data center efficiency opportunity. Technical brief. California Energy Commission’s Public Interest Energy Research (PIER) Program’.Google Scholar
  96. Pierson, J.-M. (Ed.). (2015). Large-scale distributed systems and energy efficiency. Hoboken, NJ, USA: John Wiley & Sons, Inc..  https://doi.org/10.1002/9781118981122.Google Scholar
  97. Pore, M., Abbasi, Z., Gupta, S. K. S., & Varsamopoulos, G. (2015). Techniques to achieve energy proportionality in data centers: a survey. In Handbook on data centers (pp. 109–162). New York: Springer.  https://doi.org/10.1007/978-1-4939-2092-1_4.Google Scholar
  98. Reiss, C., Tumanov, A., and Ganger, G. (2012) ‘Towards understanding heterogeneous clouds at scale: Google trace analysis’, Center for Cloud.Google Scholar
  99. Ristic, B., Madani, K., & Makuch, Z. (2015). The water footprint of data centers. Sustainability, 7(8), 11260–11284.  https://doi.org/10.3390/su70811260.CrossRefGoogle Scholar
  100. Rong, H., Zhang, H., Xiao, S., Li, C. and Hu, C. (2016) ‘Optimizing energy consumption for data centers’, Renewable and Sustainable Energy Reviews. Elsevier, 58, pp. 674–691.  https://doi.org/10.1016/j.rser.2015.12.283.
  101. Salom, J., Urbaneck, T. and Oró, E. (2017) Advanced concepts for renewable energy supply of data centres. River publishers.  https://doi.org/10.13052/rp-9788793519411.
  102. Sanders, P., Sivadasan, N. and Skutella, M. (2004) ‘Online scheduling with bounded migration’, Automata , Languages and Programming, Proceedings, pp. 1111–1122.  https://doi.org/10.1287/moor.1090.0381.
  103. Shehabi, A., Tschudi, W. and Gagdil, A. (2007) Data center economizer contamination and humidity study. Lawrence Berkeley National Laboratory.Google Scholar
  104. Shehabi, A., Horvath, A., Tschudi, W., Gadgil, A. J., & Nazaroff, W. W. (2008). Particle concentrations in data centers. Atmospheric Environment, 42(24), 5978–5990.  https://doi.org/10.1016/j.atmosenv.2008.03.049.CrossRefGoogle Scholar
  105. Shehabi, A., Smith, S. J., Sartor, D. A., Brown, R. E., Herrlin, M., Koomey, J. G., Masanet, E. R., Horner, N., Azevedo, I. L. and Lintner, W. (2016) ‘United States data center energy usage report’, Ernest Orlando Lawrence Barkeley National Laboratory, (June)Google Scholar
  106. Sheppy, M., Lobato, C., Van Geet, O., Pless, S., Donovan, K., & Chuck, P. (2011). Reducing data center loads for a large-scale, low-energy office building: NREL’s research support facility. Colorado: Golden.CrossRefGoogle Scholar
  107. SIA (2015) ‘Rebooting the IT revolution: a call to action. Semiconductor Industry Association and the Semiconductor Research Corporation’, p. 40.Google Scholar
  108. Siriwardana, J., Jayasekara, S., & Halgamuge, S. K. (2013). Potential of air-side economizers for data center cooling: a case study for key Australian cities. Applied Energy, 104, 207–219.  https://doi.org/10.1016/j.apenergy.2012.10.046.CrossRefGoogle Scholar
  109. Sithimolada, V. and Sauer, P. W. (2010) ‘Facility-level DC vs. typical AC distribution for data centers: a comparative reliability study’, IEEE Region 10 Annual International Conference, Proceedings/TENCON, pp. 2102–2107.  https://doi.org/10.1109/TENCON.2010.5686625.
  110. Sohel Murshed, S. M., & Nieto de Castro, C. A. (2017). A critical review of traditional and emerging techniques and fluids for electronics cooling. Renewable and Sustainable Energy Reviews, 78, 821–833.  https://doi.org/10.1016/j.rser.2017.04.112.CrossRefGoogle Scholar
  111. SPEC (2016) SPECpower_ssj2008 benchmark. http://www.spec.org/power_ssj2008/results/. Accessed 14-01-2016.Google Scholar
  112. Spring, N., Peterson, L., Bavier, A., & Pai, V. (2006). Using PlanetLab for network research: myths, realities, and best practices. ACM SIGOPS Operating Systems Review, 40, 17–24.  https://doi.org/10.1145/1113361.1113368.CrossRefGoogle Scholar
  113. Sueur, E. L. and Heiser, G. (2010) ‘Dynamic voltage and frequency scaling: the laws of diminishing returns’, Proceedings of the 2010 international conference on power aware computing and systems, pp. 1–8.Google Scholar
  114. Tang, C., Dai, M. and Chuang, C.-C. (2012) ‘Demand response control strategies for on-campus small data centers’, in Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic & Trusted Computing (UIC/ATC), 2012 9th International Conference on, pp. 217–224.  https://doi.org/10.1109/UIC-ATC.2012.97.
  115. Tang, C.-J., Dai, M.-R., Chuang, C.-C., Chiu, Y.-S. and Lin, W. S. (2014) ‘A load control method for small data centers participating in demand response programs’, Future Generation Computer Systems. Elsevier B.V., 32, pp. 232–245.  https://doi.org/10.1016/j.future.2013.07.020.
  116. Tang, Y., Sun, H., Wang, X., & Liu, X. (2017). Achieving convergent causal consistency and high availability for cloud storage. Future Generation Computer Systems, 74, 20–31.  https://doi.org/10.1016/j.future.2017.04.016.CrossRefGoogle Scholar
  117. Tesauro, G., Jong, N. K., Das, R. and Bennani, M. N. (2006) ‘A hybrid reinforcement learning approach to autonomic resource allocation’, In Proceedings of the IEEE International Conference on Autonomic Computing, 2006. ICAC’06., pp. 65–73.  https://doi.org/10.1109/ICAC.2006.1662383.
  118. The Green Grid (2016) ‘The green grid’. http://www.thegreengrid.org.Google Scholar
  119. Thekkilakattil, A., Pillai, A. S., Dobrin, R. and Punnekkat, S. (2010) ‘Preemption control using frequency scaling in fixed priority scheduling’, In 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing. IEEE, pp. 281–288.  https://doi.org/10.1109/EUC.2010.47.
  120. Tran, N., Ren, S., Han, Z., Man Jang, S., Il Moon, S. and Seon Hong, C. (2014) ‘Demand response of data centers: a real-time pricing game between utilities in smart grid’, 9th International Workshop on Feedback Computing.Google Scholar
  121. Tsirogiannis, D., Harizopoulos, S. and Shah, M. a (2010) ‘Analyzing the energy efficiency of a database server’, the 2010 International Conference, p. 231.  https://doi.org/10.1145/1807167.1807194.
  122. Uddin, M., & Rahman, A. A. (2012). Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics. Renewable and Sustainable Energy Reviews, 16, 4078–4094.  https://doi.org/10.1016/j.rser.2012.03.014.CrossRefGoogle Scholar
  123. Uddin, M., Darabidarabkhani, Y., Shah, A., & Memon, J. (2015). Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: a review. Renewable and Sustainable Energy Reviews, 51, 1553–1563.  https://doi.org/10.1016/j.rser.2015.07.061.CrossRefGoogle Scholar
  124. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., & Wood, T. (2008). Agile dynamic provisioning of multi-tier internet applications. ACM Transactions on Autonomous and Adaptive Systems, 3(1), 1–39.  https://doi.org/10.1145/1342171.1342172.CrossRefGoogle Scholar
  125. Van Heddeghem, W., Lambert, S., Lannoo, B., Colle, D., Pickavet, M. and Demeester, P. (2014) ‘Trends in worldwide ICT electricity consumption from 2007 to 2012’, Computer Communications Elsevier B.V., 50, pp. 64–76.  https://doi.org/10.1016/j.comcom.2014.02.008.
  126. Vanson-Bourne (2011) V-index: virtualization penetration rate in the enterprise. Available at: http://www.v-index.com/full-report.html.Google Scholar
  127. Varrette, S., Bouvry, P., Jarus, M., & Oleksiak, A. (2015). Energy efficiency in HPC data centers: latest advances to build the path to Exascale. In Handbook on data centers (pp. 81–107). New York: Springer.  https://doi.org/10.1007/978-1-4939-2092-1_3.Google Scholar
  128. Vasques, T., Moura, P. and Almeida, A. de (2017) ‘Energy efficiency insight into small and medium data centres: a comparative analysis based on a survey’, 13th European Council for an Energy Efficient Economy Summer Study on energy efficiency (ECEEE 2017), Presqu’île de Giens (France), 29th May - 3rd June.Google Scholar
  129. Verma, A., Koller, R., Useche, L. and Rangaswami, R. (2010) ‘SRCMap: Energy proportional storage using dynamic consolidation’, FAST’10 Proceedings of the 8th USENIX conference on File and storage technologies, (VM), p. 20.Google Scholar
  130. vor dem Berge, M., Buchholz, J., Cupertino, L., Da Costa, G., Donoghue, A., Gallizo, G., Jarus, M., Lopez, L., Oleksiak, A., Pages, E., Piątek, W., Pierson, J.-M., Piontek, T., Rathgeb, D., Salom, J., Sisó, L., Volk, E., Wössner, U., & Zilio, T. (2015). CoolEmAll: models and tools for planning and operating energy efficient data Centres. In Handbook on data centers (pp. 191–245). New York: Springer New York.  https://doi.org/10.1007/978-1-4939-2092-1_6.Google Scholar
  131. Wang, C. and De Groot, M. (2013) ‘Enabling demand response in a computer cluster’, 2013 IEEE International Conference on Smart Grid Communications, SmartGridComm 2013, pp. 181–186.  https://doi.org/10.1109/SmartGridComm.2013.6687954.
  132. Wang, X., & Wang, Y. (2011). Coordinating power control and performance management for virtualized server clusters. IEEE Transactions on Parallel and Distributed Systems, 22(2), 245–259.  https://doi.org/10.1109/TPDS.2010.91.CrossRefGoogle Scholar
  133. Wang, P., Huang, J. Y., Ding, Y., Loh, P. and Goel, L. (2011) ‘Demand side load management of smart grids using intelligent trading/metering/billing system’, 2011 IEEE Trondheim PowerTech, pp. 1–6.  https://doi.org/10.1109/PTC.2011.6019420.
  134. Wang, D., Ren, C., Sivasubramaniam, A., Urgaonkar, B., & Fathy, H. (2012). Energy storage in datacenters: what, where and how much. ACM SIGMETRICS Performance Evaluation Review, 40(1), 187.  https://doi.org/10.1145/2318857.2254780.CrossRefGoogle Scholar
  135. Wang, C., Urgaonkar, B., Wang, Q. and Kesidis, G. (2013) ‘A hierarchical demand response framework for data center power cost optimization under real-world electricity pricing’, pp. 1–10.Google Scholar
  136. Wang, H., Huang, J., Lin, X., & Mohsenian-Rad, H. (2016). Proactive demand response for data centers: a win-win solution. IEEE Transactions on Smart Grid, 7(3), 1584–1596.  https://doi.org/10.1109/TSG.2015.2501808.CrossRefGoogle Scholar
  137. Wang, B., Chen, C., He, L., Gao, B., Ren, J., Fu, Z., Fu, S., Hu, Y., & Li, C. T. (2017a). Modelling and developing conflict-aware scheduling on large-scale data centres. Future Generation Computer Systems., 86, 995–1007.  https://doi.org/10.1016/j.future.2017.07.043.CrossRefGoogle Scholar
  138. Wang, Y., Brun, E., Malvagi, F. and Calvin, C. (2017b) ‘Competing energy lookup algorithms in Monte Carlo neutron transport calculations and their optimization on CPU and Intel MIC architectures’, Journal of Computational Science.  https://doi.org/10.1016/j.jocs.2017.01.006.
  139. Whitney, J. and Delforge, P. (2014) ‘Data center efficiency assessment scaling up energy efficiency across the data center industry: evaluating key drivers and barriers’, (August).Google Scholar
  140. Wiboonrat, M. (2012) ‘Next generation data center design under smart grid’, Ubiquitous and Future Networks (ICUFN), 2012 Fourth International Conference on, pp. 103–108.  https://doi.org/10.1109/ICUFN.2012.6261673.
  141. Wierman, A., Liu, Z., Liu, I. and Mohsenian-Rad, H. (2014) ‘Opportunities and challenges for data center demand response’, International Green Computing Conference. IEEE, pp. 1–10.  https://doi.org/10.1109/IGCC.2014.7039172.
  142. Zakarya, M., & Gillam, L. (2017). Energy efficient computing, clusters, grids and clouds: a taxonomy and survey. Sustainable Computing: Informatics and Systems, 14, 13–33.  https://doi.org/10.1016/j.suscom.2017.03.002.Google Scholar
  143. Zhang, H., Shao, S., Xu, H., Zou, H., & Tian, C. (2014). Free cooling of data centers: a review. Renewable and Sustainable Energy Reviews, 35, 171–182.  https://doi.org/10.1016/j.rser.2014.04.017.CrossRefGoogle Scholar
  144. Zhu, W., Garrett, D., Butkowski, J., & Wang, Y. (2012). Overview of distributive energy storage systems for residential communities’, 2012 IEEE Energytech. Energytech, 2012(1), 1–6.  https://doi.org/10.1109/EnergyTech.2012.6304671.Google Scholar
  145. Zhu, K., Cui, Z., Wang, Y., Li, H., Zhang, X., & Franke, C. (2017). Estimating the maximum energy-saving potential based on IT load and IT load shifting. Energy, 138, 902–909.  https://doi.org/10.1016/j.energy.2017.07.092.CrossRefGoogle Scholar
  146. Zhuravlev, S., Saez, J. C., Blagodurov, S., Fedorova, A., & Prieto, M. (2013). Survey of energy-cognizant scheduling techniques. Parallel and Distributed Systems, IEEE Transactions on, 24(7), 1447–1464.  https://doi.org/10.1109/TPDS.2012.20.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Systems and Robotics, Department of Electrical and Computer EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations