Energy Efficiency

, Volume 12, Issue 5, pp 1105–1121 | Cite as

Analysis of the Belgian electricity mix used in environmental life cycle assessment studies: how reliable is the ecoinvent 3.1 mix?

  • Matthias BuyleEmail author
  • Joke Anthonissen
  • Wim Van den Bergh
  • Johan Braet
  • Amaryllis Audenaert
Original Article


The current contribution gives insight into the Belgian low-voltage electricity mix, used in environmental life cycle assessment studies and modelled following the attributional and consequential approach. Is the electricity mix for Belgium, as available in the life cycle inventory database ecoinvent 3.1, representative for the current electricity mix and the future developments? Studies on this research topic are missing in the literature, especially for this particular geographical and time frame. In this study, data from the European Network of Transmission System Operators for Electricity and the Federal Planning Bureau have been used to model the historical and future Belgian low-voltage electricity mix. The environmental impact is analysed for different scenarios: attributional and consequential modelling, historic and outlook data, the domestic electricity mix and the extended mix with import from other countries. The life cycle inventory database ecoinvent 3.1 and the life cycle impact assessment method ReCiPe version 1.12 are used. It was found that the historical attributional mixes are well represented by the ecoinvent 3.1 mix. All other scenario mixes significantly differ from the mixes in ecoinvent 3.1.


Belgium Low-voltage electricity mix Life cycle assessment Attributional Consequential 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Athena Institute. (2006). A life cycle perspective on concrete and asphalt roadways: Embodied primary energy and global warming potential.Google Scholar
  2. Bauer, C. (2013). Electricity markets in different system models of the ecoinvent v3 database. Villigen.Google Scholar
  3. Braet, J. (2011). The environmental impact of container pipeline transport compared to road transport. Case study in the Antwerp Harbor region and some general extrapolations. The International Journal of Life Cycle Assessment, 16(9), 886–896. Scholar
  4. Buyle, M. (2018). Towards a structured consequential modelling approach for the construction sector: The Belgian case. A fairy tale on methodological choices in LCA. University of Antwerp.Google Scholar
  5. Buyle, M., Audenaert, A., Braet, J., & Debacker, W. (2015). Towards a more sustainable building stock: Optimizing a Flemish dwelling using a life cycle approach. Buildings, 5(2), 424–448. Scholar
  6. Buyle, M., Braet, J., & Audenaert, A. (2013). Life cycle assessment in the construction sector: A review. Renewable and Sustainable Energy Reviews, 26, 379–388. Scholar
  7. Buyle, M., Pizzol, M., & Audenaert, A. (2017). Identifying marginal suppliers of construction materials: Consistent modeling and sensitivity analysis on a Belgian case. International Journal of Life Cycle Assessment, 1–17. doi:
  8. Capros, P., De Vita, A., Tasios, N., Siskos, P., Kannavou, M., Papadopoulos, D., et al. (2013). EU energy, transport and GHG emissions: Trends to 2050, reference scenario 2013. Luxembourg. doi:
  9. Cole, R., & Kernan, P. C. (1996). Life-cycle energy use in office buildings. Building and Environment, 31(4), 307–317. Scholar
  10. Curran, M., Mann, M., & Norris, G. (2005). The international workshop on electricity data for life cycle inventories. Journal of Cleaner Production, 13(8), 853–862. Scholar
  11. Data Expert Group ENTSO-E. (2015). Guidelines for monthly statistics data collection. Brussels.Google Scholar
  12. Ekvall, T., & Weidema, B. P. B. (2004). System boundaries and input data in consequential life cycle inventory analysis. The International Journal of Life Cycle Assessment, 9(3), 161–171. Scholar
  13. Elia Web Page. (n.d.).Google Scholar
  14. ENTSO-E. (n.d.-a). Country data package.Google Scholar
  15. ENTSO-E. (n.d.-b). Transparency Platform.Google Scholar
  16. European Commision. (2014). A policy framework for climate and energy in the period from 2020 up to 2030. Communication (COM(2014) 15 final), impact assessment (SWD(2014) 15), energy economic developments in Europe (European economy 1/2014). Brussels.Google Scholar
  17. European Commission. (2010). Europe 2020: A strategy for smart, sustainable and inclusive growth. COM(2010) 2020 final. Brussels. doi:
  18. Federal Planning Bureau. (2014). Het Belgische energiesysteem in 2050: Waar naartoe? - Beschrijving van een Referentiescenario voor België [The Belgian energy system in 2050: where to go? - Description of a reference scenario for Belgium]. Brussels.Google Scholar
  19. Federal Planning Bureau. (2015). 2030 climate and energy framework for Belgium: Impact assessment of a selection of policy scenarios up to 2050. Brussels.Google Scholar
  20. Garcia-Gusano, D., Garrain, D., & Dufour, J. (2017). Prospective life cycle assessment of the Spanish electricity production. Renewable and Sustainable Energy Reviews, 75, 21–34. Scholar
  21. Gerilla, G., Teknomo, K., & Hokao, K. (2007). An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment, 42(7), 2778–2784. Scholar
  22. Gibon, T., Arvesen, A., & Hertwich, E. G. (2017). Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options. Renewable and Sustainable Energy Reviews, 76, 1283–1290. Scholar
  23. Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & van Zelm, R. (2013). ReCiPe 2008 - report I: Characterisation. The Hague, The Netherlands.Google Scholar
  24. IEA. (2014). Energy Policies of IEA Countries. Luxembourg 2014 Review. Paris, France.
  25. Itten, R., Frischknecht, R., Stucki, M., Scherrer, P., & Psi, I. (2012). Life cycle inventories of electricity mixes and grid, (June), 1–229.Google Scholar
  26. Kicak, K., & Ménard, J.-F. (2009). Comparative life-cycle assessment of cement concrete pavement and asphalt pavement for the purposes of integrating energy and environmental parameters into the selection of pavement types. Québec.Google Scholar
  27. Kuppens, M., Umans, L., Adriaens, A., De Greeff, L., Werquin, W., & Vangilbergen, B. (2013). Tarieven en capaciteiten voor storten en verbranden - Actualisatie tot 2012 [tariffs and capacities of landfill and wast incineration - update until 2012]. Journal of chemical information and modeling. Mechelen, Belgium. 138054246784520130930_Tarieven_Capaciteiten2012.Pdf.
  28. Lund, H., Mathiesen, B. V., Christensen, P., & Schmidt, J. H. (2010a). Energy system analysis of marginal electricity supply in consequential LCA. The International Journal of Life Cycle Assessment, 15(3), 260–271. Scholar
  29. Lund, H., Mathiesen, B. V., Christensen, P., & Schmidt, J. H. (2010b). Energy system analysis of marginal electricity supply in consequential LCA. The International Journal of Life Cycle Assessment, 15(3), 260–271. Scholar
  30. Martínez-Rocamora, A., Solís-Guzmán, J., & Marrero, M. (2016). LCA databases focused on construction materials: A review. Renewable and Sustainable Energy Reviews, 58, 565–573. Scholar
  31. Masanet, E., Chang, Y., Gopal, A. R., Larsen, P., Iii, W. R. M., Sathre, R., et al. (2013). Life-cycle assessment of electric power systems. Annual Review of Environment and Resources, 38, 107–136. Scholar
  32. Mathiesen, B. V., Münster, M., & Fruergaard, T. (2009). Uncertainties related to the identification of the marginal energy technology in consequential life cycle assessments. Journal of Cleaner Production, 17(15), 1331–1338. Scholar
  33. Messagie, M., Mertens, J., Oliveira, L., Rangaraju, S., Sanfelix, J., Coosemans, T., van Mierlo, J., & Macharis, C. (2014). The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment. Applied Energy, 134, 469–476. Scholar
  34. Mithraratne, N., & Vale, B. (2004). Life cycle analysis model for New Zealand houses. Building and Environment, 39, 483–492.CrossRefGoogle Scholar
  35. National Renewable Energy Laboratory. (2013). Life cycle assessment harmonization methodology. Accessed 11 May 2016.
  36. PRé. (2013). SimaPro Database Manual - Methods Library.Google Scholar
  37. Rangaraju, S., De Vroey, L., Messagie, M., Mertens, J., & Van Mierlo, J. (2015). Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study. Applied Energy, 148, 496–505. Scholar
  38. Roux, C., Schalbart, P., & Peuportier, B. (2017). Development of an electricity system model allowing dynamic and marginal approaches in LCA—Tested in the French context of space heating in buildings. International Journal of Life Cycle Assessment, 22(8), 1177–1190. Scholar
  39. Schmidt, J. H., & Thrane, M. (2009). Life cycle assessment of aluminium production in new Alcoa smelter in Greenland. Denmark: Aalborg. Scholar
  40. Sleeswijk, A. W., van Oers, L. F. C. M., Guinée, J. B., Struijs, J., & Huijbregts, M. A. J. (2008). Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of the Total Environment, 390(1), 227–240.CrossRefGoogle Scholar
  41. Soimakallio, S., Kiviluoma, J., & Saikku, L. (2011). The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) - a methodological review. Energy, 36(12), 6705–6713. Scholar
  42. Treyer, K., & Bauer, C. (2014). Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database—Part II: Electricity markets. The International Journal of Life Cycle Assessment., 21, 1255–1268. Scholar
  43. Weidema, B. P. (2003). Environmental project no. 863. Market information in life cycle assessment. Environmental Project No. 863. Copenhagen, Denmark. [accessed 21–8-2017].
  44. Weidema, B. P., Bauer, C., Hischier, R., Mutel, C., Nemecek, T., Reinhard, J., et al. (2013). Overview and methodology. Data quality guideline for the ecoinvent database version 3. Swiss Center For Life Cycle Inventories (Vol. ecoinvent). St. Gallen, Switserland.Google Scholar
  45. Weidema, B. P., Frees, N., & Nielsen, A.-M. (1999). Marginal production technologies for life cycle inventories. The International Journal of Life Cycle Assessment, 4(1), 48–56. Scholar
  46. Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): Overview and methodology. International Journal of Life Cycle Assessment, 21(9), 1218–1230. Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Matthias Buyle
    • 1
    Email author
  • Joke Anthonissen
    • 1
  • Wim Van den Bergh
    • 1
  • Johan Braet
    • 2
    • 3
  • Amaryllis Audenaert
    • 1
    • 2
  1. 1.Faculty of Applied EngineeringUniversity of AntwerpAntwerpBelgium
  2. 2.Faculty of Applied EconomicsUniversity of AntwerpAntwerpBelgium
  3. 3.Faculty of Design sciences, Product DevelopmentUniversity of AntwerpAntwerpBelgium

Personalised recommendations