Skip to main content

Advertisement

Log in

Development of new improved energy management strategies for electric vehicle battery/supercapacitor hybrid energy storage system

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Hybrid energy storage systems (HESS) are used to optimize the performances of the embedded storage system in electric vehicles. The hybridization of the storage system separates energy and power sources, for example, battery and supercapacitor, in order to use their characteristics at their best. This paper deals with the improvement of the size, efficiency, or cost of the embedded source using new management strategies for HESS. In addition, one of the most important advantages of this novel strategies is the improvement of battery lifetime. As a result of this development, significant reductions in the cost and optimizing the performance of electric vehicles can be achieved. Simulation results show that the RMS (root mean square) power of battery is effectively reduced, and the quantity of charge can be considered as main factor in the concepts of embedded energy management. Experimental validation is achieved with a low power test bench, where the battery and supercapacitor are emulated by power electronic devise with electrical models of the storage system implemented in software environment. The experimental results verify the proposed energy management strategies through demonstrating the decreasing of the power constraint applied to the battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • Affanni, A., Bellini, A., Franceschini, G., Guglielmi, P., & Tassoni, C. (2005). Battery choice and management for new-generation electric vehicles. IEEE Transactions on Industrial Electronics, 52(5), 1343–1349.

    Article  Google Scholar 

  • Alahmad, M. A., & Hess, H. L. (2008). Evaluation and analysis of a new solid-state rechargeable microscale lithium battery. IEEE Transactions on Industrial Electronics, 55(9), 3391–3401.

    Article  Google Scholar 

  • Amjadi, Z., & Williamson, S. S. (2010). Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems. IEEE Transactions on Industrial Electronics, 57(2), 608–616.

    Article  Google Scholar 

  • Azib, T., Bethoux, O., Remy, G., Marchand, C., & Berthelot, E. (2010). An innovative control strategy of a single converter for hybrid fuel cell/supercapacitor power source. IEEE Transactions on Industrial Electronics, 57(12), 4024–4031.

    Article  Google Scholar 

  • Aziz, J. A. & Ramli, N. (2012). Detail analysis of RC parallel network-based model for high capacity lithium ferro phosphates battery. 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), pp. D62–D62.

  • Banaei, A. & Fahimi, B. (2010). Real time condition monitoring in Li-Ion batteries via battery impulse response. 2010 I.E. Vehicle Power and Propulsion Conference, 1–6.

  • Brand, J., Zhang, Z., & Agarwal, R. K. (2014). Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm. Journal of Power Sources, 247, 729–737.

    Article  Google Scholar 

  • Brundell-Freij, K. & Ericsson, E. (2005). Influence of street characteristics, driver category and car performance on urban driving patterns. Transportation Research Part C: Emerging Technologies.

  • Buller, S., Karden, E., Kok, D., & De Doncker, R. W. (2002). Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. IEEE Transactions on Industry Applications, 38(6), 1622–1626.

    Article  Google Scholar 

  • Burke, A. F. (2007). Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 95(4), 806–820.

    Article  Google Scholar 

  • Camara, M. B., Dakyo, B., & Gualous, H. (2012). Polynomial control method of DC/DC converters for DC-bus voltage and currents management—battery and supercapacitors. IEEE Transactions on Power Electronics, 27(3), 1455–1467.

    Article  Google Scholar 

  • Camara, M. B., Gualous, H., Gustin, F., Berthon, A., & Dakyo, B. (2010). DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—polynomial control strategy. IEEE Transactions on Industrial Electronics, 57(2), 587–597.

    Article  Google Scholar 

  • Carignano, M. G., Cabello, J. M., & Junco, S. (2014). Sizing and performance analysis of battery pack in electric vehicles. In 2014 I.E. Biennial Congress of Argentina (ARGENCON) (pp. 240–244).

  • Caux, S., Wanderley-Honda, D., Hissel, D., & Fadel, M. (2010). On-line energy management for HEV based on particle swarm optimization. 2010 I.E. Vehicle Power and Propulsion Conference, 1–7.

  • Choi, M.-E., Kim, S.-W., & Seo, S.-W. (2012). Energy management optimization in a battery/supercapacitor hybrid energy storage system. IEEE Transactions on Smart Grid, 3(1), 463–472.

    Article  Google Scholar 

  • Dusmez, S., & Khaligh, A. (2014). A supervisory power-splitting approach for a new ultracapacitor–battery vehicle deploying two propulsion machines. IEEE Transactions on Industrial Informatics, 10(3), 1960–1971.

    Article  Google Scholar 

  • Emori, A., Kikuchi, M., Kudou, A., & Kubo, K. (2008). Battery control circuit using non-isolation daisy-chain architecture for a 400V Li-ion battery system of a hybrid electric vehicle. 2008 I.E. Vehicle Power and Propulsion Conference, 1–4.

  • Ericsson, E. (2001). Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transportation Research.

  • Galdi, V., Piccolo, A., & Siano, P. (2006). A fuzzy based safe power management algorithm for energy storage systems in electric vehicles. 2006 I.E. Vehicle Power and Propulsion Conference, 1–6.

  • Garcia, P., Fernandez, L. M., Garcia, C. A., & Jurado, F. (2010). Energy management system of fuel-cell-battery hybrid tramway. IEEE Transactions on Industrial Electronics, 57(12), 4013–4023.

    Article  Google Scholar 

  • Gholizadeh, M., & Salmasi, F. R. (2014). Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model. IEEE Transactions on Industrial Electronics, 61(3), 1335–1344.

    Article  Google Scholar 

  • Guidi, G., Undeland, T. M., & Hori, Y. (2009). Effectiveness of supercapacitors as power-assist in pure ev using a sodium-nickel chloride battery as main energy storage. In EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (pp. 1–9).

  • Hammani, A., Sadoun, R., Rizoug, N., Bartholomeus, P., Barbedette, B., & Le Moigne, P. (2012). Influence of the management strategies on the sizing of hybrid supply composed with battery and supercapacitor. In 2012 First International Conference on Renewable Energies and Vehicular Technology (pp. 1–7).

  • Hammar, A., Venet, P., Lallemand, R., Coquery, G., & Rojat, G. (2010). Study of accelerated aging of supercapacitors for transport applications. IEEE Transactions on Industrial Electronics, 57(12), 3972–3979.

    Article  Google Scholar 

  • Hu, X., Johannesson, L., Murgovski, N., & Egardt, B. (2015). Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus. Applied Energy, 137(1), 913–924 ISSN 0306-2619.

    Article  Google Scholar 

  • Hu, X., Martinez, C. M., & Yang, Y. (2017). Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: a unified cost-optimal approach. Mechanical Systems and Signal Processing, Volume 87, Part B, 15, 4–16 ISSN 0888-3270.

    Article  Google Scholar 

  • Hu, X., Murgovski, N., Johannesson, L. M., & Egardt, B. (2014). Comparison of three electrochemical energy buffers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management. in IEEE Transactions on Intelligent Transportation Systems, 15(3), 1193–1205.

    Article  Google Scholar 

  • Hu, X., Zou, Y., & Yang, Y. (2016). Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy, 111(15), 971–980 ISSN 0360-5442.

    Article  Google Scholar 

  • Juergen, A., Sartorelli, G., & Miller, J. (2006). A gatekeeper energy management strategy for ecvt hybrid vehicle propulsion utilising ultracapacitors. Hybrid Vehicle Conference (Conf. Pub. CP526), IET, 79–90.

  • Kohler, T. P., Buecherl, D., & Herzog, H.-G., (2009). Investigation of control strategies for hybrid energy storage systems in hybrid electric vehicles. 2009 I.E. Vehicle Power and Propulsion Conference, 1687–1693.

  • Konig, O., Hametner, C., Prochart, G., & Jakubek, S. (2014). Battery emulation for power-HIL using local model networks and robust impedance control. IEEE Transactions on Industrial Electronics, 61(2), 943–955.

    Article  Google Scholar 

  • Kreczanik, P., Venet, P., Hijazi, A., & Clerc, G. (2014). Study of supercapacitor aging and lifetime estimation according to voltage, temperature, and RMS current. IEEE Transactions on Industrial Electronics, 61(9), 4895–4902.

    Article  Google Scholar 

  • Kuperman, A., Levy, U., Goren, J., Zafransky, A., & Savernin, A. (2013). Battery charger for electric vehicle traction battery switch station. IEEE Transactions on Industrial Electronics, 60(12), 5391–5399.

    Article  Google Scholar 

  • Melero-Perez, A. & Fernandez-Lozano, J. J. (2009). Fuzzy Logic energy management strategy for Fuel Cell/Ultracapacitor/Battery hybrid vehicle with Multiple-Input DC/DC converter. In 2009 I.E. Vehicle Power and Propulsion Conference (pp. 199–206).

  • Mesbahi, T., Khenfri, F., Rizoug, N., Chaaban, K., Bartholomeüs, P., & Le Moigne, P. (2016). Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm. Electric Power Systems Research, 131, 195–204.

    Article  Google Scholar 

  • Mesbahi, T., Rizoug, N., Bartholomeus, P., & Le Moigne, P. (2013). Li-ion battery emulator for electric vehicle applications. 2013 I.E. Vehicle Power and Propulsion Conference (VPPC), 1–8.

  • Mesbahi, T., Rizoug, N., Bartholomeüs, P., & Moigne, P. L. (2014). A new energy management strategy of a battery/supercapacitor hybrid energy storage system for electric vehicular applications. 7th IET International Conference on Power Electronics, Machines and Drives, pp. 1–7.

  • Mousavi, M., Hoque, S., Rahnamayan, S., Dincer, I., & Naterer, G. F. (2011) Optimal design of an air-cooling system for a Li-ion battery pack in electric vehicles with a genetic algorithm. 2011 I.E. Congress of Evolutionary Computation (CEC), 1848–1855.

  • Njoya Motapon, S., Dessaint, L.-A., & Al-Haddad, K. (2014). A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Transactions on Industrial Electronics, 61(3), 1320–1334.

    Article  Google Scholar 

  • Ortuzar, M., Moreno, J., & Dixon, J. (2007). Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation. IEEE Transactions on Industrial Electronics, 54(4), 2147–2156.

    Article  Google Scholar 

  • Paul, S., Diegelmann, C., Kabza, H., & Tillmetz, W. (2013). Analysis of ageing inhomogeneities in lithium-ion battery systems. Journal of Power Sources, 1–9.

  • Perez-Pinal, F. J., Nunez, C., Alvarez, R., & Cervantes, I. (2007). Power management strategies for a fuel cell/supercapacitor electric vehicle. In 2007 I.E. Vehicle Power and Propulsion Conference (pp. 605–609).

  • Prasad, G. K., & Rahn, C. D. (2013). Model based identification of aging parameters in lithium ion batteries. Journal of Power Sources, 232, 79–85.

    Article  Google Scholar 

  • Rahimi-Eichi, H., Baronti, F., & Chow, M.-Y. (2014). Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells. IEEE Transactions on Industrial Electronics, 61(4), 2053–2061.

    Article  Google Scholar 

  • Riu, D., Retiere, N., & Linzen, D., (2004). Half-order modelling of supercapacitors. In Conference Record of the 2004 I.E. Industry Applications Conference, 2004. 39th IAS Annual Meeting (vol. 4, no. 2, pp. 2550–2554).

  • Rizoug, N., Bartholomeus, P., & Le Moigne, P. (2010). Modeling and characterizing supercapacitors using an online method. IEEE Transactions on Industrial Electronics, 57(12), 3980–3990.

    Article  Google Scholar 

  • Rizoug, N., Bartholomeus, P., & Le Moigne, P. (2012). Study of the ageing process of a supercapacitor module using direct method of characterization. IEEE Transactions on Energy Conversion, 27(2), 220–228.

    Article  Google Scholar 

  • Romaus, C., Bocker, J., Witting, K., Seifried, A., & Znamenshchykov, O. (2009). Optimal energy management for a hybrid energy storage system combining batteries and double layer capacitors. In 2009 I.E. Energy Conversion Congress and Exposition (pp. 1640–1647).

  • Romaus, C., Gathmann, K., & Bocker, J. (2010). Optimal energy management for a hybrid energy storage system for electric vehicles based on Stochastic Dynamic Programming. In 2010 I.E. Vehicle Power and Propulsion Conference (pp. 1–6).

  • Sadoun, R. (2013). Intérêt d’une Source d’Energie Electrique Hybride pour véhicule électrique urbain—dimensionnement et tests de cyclage. Thesis, Ecole Centrale de Lille.

  • Sadoun, R., Rizoug, N., Bartholomeus, P., Barbedette, B., & Le Moigne, P. (2011). Optimal sizing of hybrid supply for electric vehicle using Li-ion battery and supercapacitor. 2011 I.E. Vehicle Power and Propulsion Conference, 1–8.

  • Sadoun, R., Rizoug, N., Bartholumeus, P., Barbedette, B., & LeMoigne, P. (2012). Sizing of hybrid supply (battery-supercapacitor) for electric vehicle taking into account the weight of the additional Buck-Boost chopper. 2012 First International Conference on Renewable Energies and Vehicular Technology, 2(1), 8–14.

    Article  Google Scholar 

  • Salmasi, F. R. (2007). Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends. IEEE Transactions on Vehicular Technology, 56(5), 2393–2404.

    Article  Google Scholar 

  • Schaltz, E., Khaligh, A., & Rasmussen, P. O. (2009). Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle. IEEE Transactions on Vehicular Technology, 58(8), 3882–3891.

    Article  Google Scholar 

  • Thanagasundram, S., Arunachala, R., Makinejad, K., Teutsch, T., & Jossen, A. (2012). A cell level model for battery simulation. EEVC European Electric Vehicle Congress, 1–13.

  • Thounthong, P., Rael, S., & Davat, B. (2007). Control strategy of fuel cell and supercapacitors association for a distributed generation system. IEEE Transactions on Industrial Electronics, 54(6), 3225–3233.

    Article  Google Scholar 

  • Torregrossa, D., Bahramipanah, M., Namor, E., Cherkaoui, R., & Paolone, M. (2014). Improvement of dynamic modeling of supercapacitor by residual charge effect estimation. IEEE Transactions on Industrial Electronics, 61(3), 1345–1354.

    Article  Google Scholar 

  • Uno, M., & Tanaka, K. (2013). Single-switch multioutput charger using voltage multiplier for series-connected lithium-ion battery/supercapacitor equalization. IEEE Transactions on Industrial Electronics, 60(8), 3227–3239.

    Article  Google Scholar 

  • Waag, W., Käbitz, S., & Sauer, D. U. (2013). Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Applied Energy, 102, no. null, 885–897.

    Article  Google Scholar 

  • Wang, G., Yang, P., & Zhang, J. (2010). Fuzzy optimal control and simulation of battery-ultracapacitor dual-energy source storage system for pure electric vehicle. 2010 International Conference on Intelligent Control and Information Processing, 555–560.

  • Wirasingha, S. G., & Emadi, A. (2011). Classification and review of control strategies for plug-in hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 60(1), 111–122.

    Article  Google Scholar 

  • Xiong, R., He, H., Guo, H., & Ding, Y. (2011). Modeling for lithium-ion battery used in electric vehicles. Procedia Engineering, 15, 2869–2874.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassim Rizoug.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizoug, N., Mesbahi, T., Sadoun, R. et al. Development of new improved energy management strategies for electric vehicle battery/supercapacitor hybrid energy storage system. Energy Efficiency 11, 823–843 (2018). https://doi.org/10.1007/s12053-017-9602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-017-9602-8

Keywords

Navigation