Energy Efficiency

, Volume 11, Issue 4, pp 823–843 | Cite as

Development of new improved energy management strategies for electric vehicle battery/supercapacitor hybrid energy storage system

  • Nassim Rizoug
  • Tedjani Mesbahi
  • Redha Sadoun
  • Patrick Bartholomeüs
  • Philippe Le Moigne
Original Article
  • 153 Downloads

Abstract

Hybrid energy storage systems (HESS) are used to optimize the performances of the embedded storage system in electric vehicles. The hybridization of the storage system separates energy and power sources, for example, battery and supercapacitor, in order to use their characteristics at their best. This paper deals with the improvement of the size, efficiency, or cost of the embedded source using new management strategies for HESS. In addition, one of the most important advantages of this novel strategies is the improvement of battery lifetime. As a result of this development, significant reductions in the cost and optimizing the performance of electric vehicles can be achieved. Simulation results show that the RMS (root mean square) power of battery is effectively reduced, and the quantity of charge can be considered as main factor in the concepts of embedded energy management. Experimental validation is achieved with a low power test bench, where the battery and supercapacitor are emulated by power electronic devise with electrical models of the storage system implemented in software environment. The experimental results verify the proposed energy management strategies through demonstrating the decreasing of the power constraint applied to the battery.

Keywords

Electric vehicle Battery Energy management strategy Hybrid energy storage system Battery lifetime HESS sizing 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Affanni, A., Bellini, A., Franceschini, G., Guglielmi, P., & Tassoni, C. (2005). Battery choice and management for new-generation electric vehicles. IEEE Transactions on Industrial Electronics, 52(5), 1343–1349.CrossRefGoogle Scholar
  2. Alahmad, M. A., & Hess, H. L. (2008). Evaluation and analysis of a new solid-state rechargeable microscale lithium battery. IEEE Transactions on Industrial Electronics, 55(9), 3391–3401.CrossRefGoogle Scholar
  3. Amjadi, Z., & Williamson, S. S. (2010). Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems. IEEE Transactions on Industrial Electronics, 57(2), 608–616.CrossRefGoogle Scholar
  4. Azib, T., Bethoux, O., Remy, G., Marchand, C., & Berthelot, E. (2010). An innovative control strategy of a single converter for hybrid fuel cell/supercapacitor power source. IEEE Transactions on Industrial Electronics, 57(12), 4024–4031.CrossRefGoogle Scholar
  5. Aziz, J. A. & Ramli, N. (2012). Detail analysis of RC parallel network-based model for high capacity lithium ferro phosphates battery. 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), pp. D62–D62.Google Scholar
  6. Banaei, A. & Fahimi, B. (2010). Real time condition monitoring in Li-Ion batteries via battery impulse response. 2010 I.E. Vehicle Power and Propulsion Conference, 1–6.Google Scholar
  7. Brand, J., Zhang, Z., & Agarwal, R. K. (2014). Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm. Journal of Power Sources, 247, 729–737.CrossRefGoogle Scholar
  8. Brundell-Freij, K. & Ericsson, E. (2005). Influence of street characteristics, driver category and car performance on urban driving patterns. Transportation Research Part C: Emerging Technologies.Google Scholar
  9. Buller, S., Karden, E., Kok, D., & De Doncker, R. W. (2002). Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. IEEE Transactions on Industry Applications, 38(6), 1622–1626.CrossRefGoogle Scholar
  10. Burke, A. F. (2007). Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 95(4), 806–820.CrossRefGoogle Scholar
  11. Camara, M. B., Dakyo, B., & Gualous, H. (2012). Polynomial control method of DC/DC converters for DC-bus voltage and currents management—battery and supercapacitors. IEEE Transactions on Power Electronics, 27(3), 1455–1467.CrossRefGoogle Scholar
  12. Camara, M. B., Gualous, H., Gustin, F., Berthon, A., & Dakyo, B. (2010). DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—polynomial control strategy. IEEE Transactions on Industrial Electronics, 57(2), 587–597.CrossRefGoogle Scholar
  13. Carignano, M. G., Cabello, J. M., & Junco, S. (2014). Sizing and performance analysis of battery pack in electric vehicles. In 2014 I.E. Biennial Congress of Argentina (ARGENCON) (pp. 240–244).Google Scholar
  14. Caux, S., Wanderley-Honda, D., Hissel, D., & Fadel, M. (2010). On-line energy management for HEV based on particle swarm optimization. 2010 I.E. Vehicle Power and Propulsion Conference, 1–7.Google Scholar
  15. Choi, M.-E., Kim, S.-W., & Seo, S.-W. (2012). Energy management optimization in a battery/supercapacitor hybrid energy storage system. IEEE Transactions on Smart Grid, 3(1), 463–472.CrossRefGoogle Scholar
  16. Dusmez, S., & Khaligh, A. (2014). A supervisory power-splitting approach for a new ultracapacitor–battery vehicle deploying two propulsion machines. IEEE Transactions on Industrial Informatics, 10(3), 1960–1971.CrossRefGoogle Scholar
  17. Emori, A., Kikuchi, M., Kudou, A., & Kubo, K. (2008). Battery control circuit using non-isolation daisy-chain architecture for a 400V Li-ion battery system of a hybrid electric vehicle. 2008 I.E. Vehicle Power and Propulsion Conference, 1–4.Google Scholar
  18. Ericsson, E. (2001). Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transportation Research.Google Scholar
  19. Galdi, V., Piccolo, A., & Siano, P. (2006). A fuzzy based safe power management algorithm for energy storage systems in electric vehicles. 2006 I.E. Vehicle Power and Propulsion Conference, 1–6.Google Scholar
  20. Garcia, P., Fernandez, L. M., Garcia, C. A., & Jurado, F. (2010). Energy management system of fuel-cell-battery hybrid tramway. IEEE Transactions on Industrial Electronics, 57(12), 4013–4023.CrossRefGoogle Scholar
  21. Gholizadeh, M., & Salmasi, F. R. (2014). Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model. IEEE Transactions on Industrial Electronics, 61(3), 1335–1344.CrossRefGoogle Scholar
  22. Guidi, G., Undeland, T. M., & Hori, Y. (2009). Effectiveness of supercapacitors as power-assist in pure ev using a sodium-nickel chloride battery as main energy storage. In EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (pp. 1–9).Google Scholar
  23. Hammani, A., Sadoun, R., Rizoug, N., Bartholomeus, P., Barbedette, B., & Le Moigne, P. (2012). Influence of the management strategies on the sizing of hybrid supply composed with battery and supercapacitor. In 2012 First International Conference on Renewable Energies and Vehicular Technology (pp. 1–7).Google Scholar
  24. Hammar, A., Venet, P., Lallemand, R., Coquery, G., & Rojat, G. (2010). Study of accelerated aging of supercapacitors for transport applications. IEEE Transactions on Industrial Electronics, 57(12), 3972–3979.CrossRefGoogle Scholar
  25. Hu, X., Johannesson, L., Murgovski, N., & Egardt, B. (2015). Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus. Applied Energy, 137(1), 913–924 ISSN 0306-2619.CrossRefGoogle Scholar
  26. Hu, X., Martinez, C. M., & Yang, Y. (2017). Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: a unified cost-optimal approach. Mechanical Systems and Signal Processing, Volume 87, Part B, 15, 4–16 ISSN 0888-3270.CrossRefGoogle Scholar
  27. Hu, X., Murgovski, N., Johannesson, L. M., & Egardt, B. (2014). Comparison of three electrochemical energy buffers applied to a hybrid bus powertrain with simultaneous optimal sizing and energy management. in IEEE Transactions on Intelligent Transportation Systems, 15(3), 1193–1205.CrossRefGoogle Scholar
  28. Hu, X., Zou, Y., & Yang, Y. (2016). Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy, 111(15), 971–980 ISSN 0360-5442.CrossRefGoogle Scholar
  29. Juergen, A., Sartorelli, G., & Miller, J. (2006). A gatekeeper energy management strategy for ecvt hybrid vehicle propulsion utilising ultracapacitors. Hybrid Vehicle Conference (Conf. Pub. CP526), IET, 79–90.Google Scholar
  30. Kohler, T. P., Buecherl, D., & Herzog, H.-G., (2009). Investigation of control strategies for hybrid energy storage systems in hybrid electric vehicles. 2009 I.E. Vehicle Power and Propulsion Conference, 1687–1693.Google Scholar
  31. Konig, O., Hametner, C., Prochart, G., & Jakubek, S. (2014). Battery emulation for power-HIL using local model networks and robust impedance control. IEEE Transactions on Industrial Electronics, 61(2), 943–955.CrossRefGoogle Scholar
  32. Kreczanik, P., Venet, P., Hijazi, A., & Clerc, G. (2014). Study of supercapacitor aging and lifetime estimation according to voltage, temperature, and RMS current. IEEE Transactions on Industrial Electronics, 61(9), 4895–4902.CrossRefGoogle Scholar
  33. Kuperman, A., Levy, U., Goren, J., Zafransky, A., & Savernin, A. (2013). Battery charger for electric vehicle traction battery switch station. IEEE Transactions on Industrial Electronics, 60(12), 5391–5399.CrossRefGoogle Scholar
  34. Melero-Perez, A. & Fernandez-Lozano, J. J. (2009). Fuzzy Logic energy management strategy for Fuel Cell/Ultracapacitor/Battery hybrid vehicle with Multiple-Input DC/DC converter. In 2009 I.E. Vehicle Power and Propulsion Conference (pp. 199–206).Google Scholar
  35. Mesbahi, T., Khenfri, F., Rizoug, N., Chaaban, K., Bartholomeüs, P., & Le Moigne, P. (2016). Dynamical modeling of Li-ion batteries for electric vehicle applications based on hybrid Particle Swarm–Nelder–Mead (PSO–NM) optimization algorithm. Electric Power Systems Research, 131, 195–204.CrossRefGoogle Scholar
  36. Mesbahi, T., Rizoug, N., Bartholomeus, P., & Le Moigne, P. (2013). Li-ion battery emulator for electric vehicle applications. 2013 I.E. Vehicle Power and Propulsion Conference (VPPC), 1–8.Google Scholar
  37. Mesbahi, T., Rizoug, N., Bartholomeüs, P., & Moigne, P. L. (2014). A new energy management strategy of a battery/supercapacitor hybrid energy storage system for electric vehicular applications. 7th IET International Conference on Power Electronics, Machines and Drives, pp. 1–7.Google Scholar
  38. Mousavi, M., Hoque, S., Rahnamayan, S., Dincer, I., & Naterer, G. F. (2011) Optimal design of an air-cooling system for a Li-ion battery pack in electric vehicles with a genetic algorithm. 2011 I.E. Congress of Evolutionary Computation (CEC), 1848–1855.Google Scholar
  39. Njoya Motapon, S., Dessaint, L.-A., & Al-Haddad, K. (2014). A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Transactions on Industrial Electronics, 61(3), 1320–1334.CrossRefGoogle Scholar
  40. Ortuzar, M., Moreno, J., & Dixon, J. (2007). Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation. IEEE Transactions on Industrial Electronics, 54(4), 2147–2156.CrossRefGoogle Scholar
  41. Paul, S., Diegelmann, C., Kabza, H., & Tillmetz, W. (2013). Analysis of ageing inhomogeneities in lithium-ion battery systems. Journal of Power Sources, 1–9.Google Scholar
  42. Perez-Pinal, F. J., Nunez, C., Alvarez, R., & Cervantes, I. (2007). Power management strategies for a fuel cell/supercapacitor electric vehicle. In 2007 I.E. Vehicle Power and Propulsion Conference (pp. 605–609).Google Scholar
  43. Prasad, G. K., & Rahn, C. D. (2013). Model based identification of aging parameters in lithium ion batteries. Journal of Power Sources, 232, 79–85.CrossRefGoogle Scholar
  44. Rahimi-Eichi, H., Baronti, F., & Chow, M.-Y. (2014). Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells. IEEE Transactions on Industrial Electronics, 61(4), 2053–2061.CrossRefGoogle Scholar
  45. Riu, D., Retiere, N., & Linzen, D., (2004). Half-order modelling of supercapacitors. In Conference Record of the 2004 I.E. Industry Applications Conference, 2004. 39th IAS Annual Meeting (vol. 4, no. 2, pp. 2550–2554).Google Scholar
  46. Rizoug, N., Bartholomeus, P., & Le Moigne, P. (2010). Modeling and characterizing supercapacitors using an online method. IEEE Transactions on Industrial Electronics, 57(12), 3980–3990.CrossRefGoogle Scholar
  47. Rizoug, N., Bartholomeus, P., & Le Moigne, P. (2012). Study of the ageing process of a supercapacitor module using direct method of characterization. IEEE Transactions on Energy Conversion, 27(2), 220–228.CrossRefGoogle Scholar
  48. Romaus, C., Bocker, J., Witting, K., Seifried, A., & Znamenshchykov, O. (2009). Optimal energy management for a hybrid energy storage system combining batteries and double layer capacitors. In 2009 I.E. Energy Conversion Congress and Exposition (pp. 1640–1647).Google Scholar
  49. Romaus, C., Gathmann, K., & Bocker, J. (2010). Optimal energy management for a hybrid energy storage system for electric vehicles based on Stochastic Dynamic Programming. In 2010 I.E. Vehicle Power and Propulsion Conference (pp. 1–6).Google Scholar
  50. Sadoun, R. (2013). Intérêt d’une Source d’Energie Electrique Hybride pour véhicule électrique urbain—dimensionnement et tests de cyclage. Thesis, Ecole Centrale de Lille.Google Scholar
  51. Sadoun, R., Rizoug, N., Bartholomeus, P., Barbedette, B., & Le Moigne, P. (2011). Optimal sizing of hybrid supply for electric vehicle using Li-ion battery and supercapacitor. 2011 I.E. Vehicle Power and Propulsion Conference, 1–8.Google Scholar
  52. Sadoun, R., Rizoug, N., Bartholumeus, P., Barbedette, B., & LeMoigne, P. (2012). Sizing of hybrid supply (battery-supercapacitor) for electric vehicle taking into account the weight of the additional Buck-Boost chopper. 2012 First International Conference on Renewable Energies and Vehicular Technology, 2(1), 8–14.CrossRefGoogle Scholar
  53. Salmasi, F. R. (2007). Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends. IEEE Transactions on Vehicular Technology, 56(5), 2393–2404.CrossRefGoogle Scholar
  54. Schaltz, E., Khaligh, A., & Rasmussen, P. O. (2009). Influence of battery/ultracapacitor energy-storage sizing on battery lifetime in a fuel cell hybrid electric vehicle. IEEE Transactions on Vehicular Technology, 58(8), 3882–3891.CrossRefGoogle Scholar
  55. Thanagasundram, S., Arunachala, R., Makinejad, K., Teutsch, T., & Jossen, A. (2012). A cell level model for battery simulation. EEVC European Electric Vehicle Congress, 1–13.Google Scholar
  56. Thounthong, P., Rael, S., & Davat, B. (2007). Control strategy of fuel cell and supercapacitors association for a distributed generation system. IEEE Transactions on Industrial Electronics, 54(6), 3225–3233.CrossRefGoogle Scholar
  57. Torregrossa, D., Bahramipanah, M., Namor, E., Cherkaoui, R., & Paolone, M. (2014). Improvement of dynamic modeling of supercapacitor by residual charge effect estimation. IEEE Transactions on Industrial Electronics, 61(3), 1345–1354.CrossRefGoogle Scholar
  58. Uno, M., & Tanaka, K. (2013). Single-switch multioutput charger using voltage multiplier for series-connected lithium-ion battery/supercapacitor equalization. IEEE Transactions on Industrial Electronics, 60(8), 3227–3239.CrossRefGoogle Scholar
  59. Waag, W., Käbitz, S., & Sauer, D. U. (2013). Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Applied Energy, 102, no. null, 885–897.CrossRefGoogle Scholar
  60. Wang, G., Yang, P., & Zhang, J. (2010). Fuzzy optimal control and simulation of battery-ultracapacitor dual-energy source storage system for pure electric vehicle. 2010 International Conference on Intelligent Control and Information Processing, 555–560.Google Scholar
  61. Wirasingha, S. G., & Emadi, A. (2011). Classification and review of control strategies for plug-in hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 60(1), 111–122.CrossRefGoogle Scholar
  62. Xiong, R., He, H., Guo, H., & Ding, Y. (2011). Modeling for lithium-ion battery used in electric vehicles. Procedia Engineering, 15, 2869–2874.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Nassim Rizoug
    • 1
  • Tedjani Mesbahi
    • 2
  • Redha Sadoun
    • 3
  • Patrick Bartholomeüs
    • 2
  • Philippe Le Moigne
    • 2
  1. 1.S2ET-ESTACA Ecole Supérieure des Techniques Aéronautiques et de Construction AutomobileLaval Cedex 9France
  2. 2.Ecole Centrale de Lille, EA 2697 - L2EP - Laboratoire d’Electrotechnique et d’Electronique de puissanceEcole Centrale de LilleLilleFrance
  3. 3.Assystem SAMontigny le BretonneuxFrance

Personalised recommendations