Energy Efficiency

, Volume 11, Issue 5, pp 1117–1133 | Cite as

Hybrid heating system for increased energy efficiency and flexible control of low temperature heat

  • G. Schumm
  • M. Philipp
  • Florian Schlosser
  • J. Hesselbach
  • T. G. Walmsley
  • M. J. Atkins
Original Article
  • 144 Downloads

Abstract

This study presents the evaluation of functionality and potential of a hybrid heating system (H2S) prototype. This technology is designed for retrofitting thermal treatment plants to use hot water (HW) and steam in controlled ratios. In the food industry, steam with a temperature above 140 °C usually indirectly supplies the thermal production processes, but most of them only require temperatures below 100 °C. Total site heat integration is applied on a cheese and whey powder plant to show the potential for low-temperature heat (below 100 °C) that could be supplied more appropriately by hot water cogeneration, heat recovery and heat pumps. These low-temperature heat sources can only be combined with the rigid steam system if the demand structure is changed to a hybrid use of HW and steam. The H2S increases the energy efficiency and flexibility by integrating low-temperature heat and responding to sudden changes in the demand and supply structure, like demand response strategies on intermittent renewable energies and the changing availability of HW and steam. The technical implementation is realised by a hydraulic interconnection of heat exchangers and valves. A smart control algorithm acutely determines the share of HW and steam. Prerequisite for functional verification on a laboratory scale is a hardware-in-the-loop (HIL) testbed, in which load profiles and relevant process parameters are passed in real time between hardware components and simulation. The results show that the H2S is a feasible solution for maintaining product quality and safety while also increasing energy efficiency and energy flexibility.

Keywords

Energy efficiency Demand response Energy management Total site system integration Heat recovery Hardware-in-the-loop evaluation 

Notes

Funding information

This research has been supported by the project “Forward-looking planning processes for more energy efficiency: Vorausschauende Planungsprozesse für mehr Energieeffizienz”. This project (HA-Projekt-Nr.: 411/14-01) is funded in the framework of Hessen ModellProjekte, financed with funds of LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3: KMU-Verbundvorhaben (State Offensive for the Development of Scientific and Economic Excellence).

This research has been supported by the project “Climate-friendly food processing through cogeneration-oriented production processes: Klimafreundliche Lebensmittel durch KWK-gerechte Produktionsprozesse”. This project (HA-Projekt-Nr.: 415/14-05) is funded in the framework of Hessen ModellProjekte, financed with funds of LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3: KMU-Verbundvorhaben (State Offensive for the Development of Scientific and Economic Excellence).

This research has been supported by the project “Energy efficiency and emission reduction in the dairy industry through smart connections of heat flows: Energie- und Klimaeffizienz in der Milchindustrie durch intelligente Kopplung von Energieströmen”. Funded by Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz; Bundesanstalt für Landwirtschaft und Ernährung; PT Innovationsförderung. Förderkennzeichen: 2817401911.

This research has been supported by the project “Sustainable Process Integration Laboratory – SPIL”, project no. CZ.02.1.01/0.0/0.0/15_003/0000456 funded by EU “CZ Operational Programme Research and Development, Education”, Priority 1: Strengthening capacity for quality research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. BKWK Bundesverband. (2011). Leitfaden zur Kostensenkung mit Kraft-Wärme-Kopplung in Molkereien. B.KWK Bundesverband. www.bkwk.de/fileadmin/users/…/Leitfaden_KWK_in_Molkereien.pdf. Accessed 29 July 2014.
  2. BMUB (2016). Klimaschutzplan 2050. Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung. Hg. v. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) und www.bmub.bund.de. Accessed 13 November 2017.
  3. Bundesvereinigung der Deutschen Ernährungsindustrie e. V. (Hg.) (2016). Ernährungsindustrie. 2016. Online verfügbar unter http://www.bve-online.de/download/bve-statistikbroschuere2016, zuletzt geprüft am 16.01.2017.
  4. Chaaban, W., Schwarz, M., Batchuluun, B., Sheng, H. & Börcsök, J. (2011). Electrical and electronics engineering (ELECO), Bursa, 01.-04.12.Google Scholar
  5. EEP (2016). Der Energieeffizienz-Index der deutschen Industrie, Ausgewählte Ergebnisse der Sommererhebung 2016, 1. Stuttgart: Halbjahr, Universität Stuttgart, Institut für Energieeffizienz in der Produktion EEP.Google Scholar
  6. Gellings, C. W., & Samotyj, M. (2013). Smart Grid as advanced technology enabler of demand response. Energy Efficiency, 6(4), 685–694.  https://doi.org/10.1007/s12053-013-9203-0.CrossRefGoogle Scholar
  7. Graichen, P., Döring, M., Holzhammer, U., Gerhardt, N., & Nabe, C. (2017). Agora Energiewende: Smart Market Design in deutschen Verteilnetzen. Entwicklung und Bewertung von Smart Modellen & Ableitung einer Regulatory Roadmap, Berlin, March, 21.Google Scholar
  8. Gruber, A., Roon, S. v., & Fattler, S. (2016). Wissenschaftliche Projektbegleitung DSM-Bayern. München.Google Scholar
  9. Hesselbach, J. (2012). Energie- und klimaeffiziente Produktion: Grundlagen, Leitlinien und Praxisbeispiele ; 34 Tabellen (Praxis). Wiesbaden: Springer Vieweg.  https://doi.org/10.1007/978-3-8348-9956-9.CrossRefGoogle Scholar
  10. Kaltschmitt, M., Streicher, W., & Wiese, A. (2013). Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Berlin: Springer Berlin Heidelberg.  https://doi.org/10.1007/978-3-642-03249-3.CrossRefGoogle Scholar
  11. Kemp, I. C. (2007). Pinch analysis and process integration: a user guide on process integration for the efficient use of energy (2nd ed.). Oxford: Butterworth-Heinemann.Google Scholar
  12. Khripko, D. (2017). Flexibilisierung des industriellen Energiebedarfes. Nutzungsgradsteigerung erneuerbarer Energien in Verteilnetzen. Dissertation. Produktion & Energie, Vol. 14. Kassel: Kassel University Press.Google Scholar
  13. Klemeš, J., Dhole, V. R., Raissi, K., Perry, S. J., & Puigjaner, L. (1997). Targeting and design methodology for reduction of fuel, power and CO2 on total sites. Applied Thermal Engineering, 17(8-10), 993–1003.  https://doi.org/10.1016/S1359-4311(96)00087-7.CrossRefGoogle Scholar
  14. Muster, B., Ben Hassine, I., Helmke, A., & Heß, S. (2015). Solar process heat for production and advanced applications. http://task49.iea-shc.org/Data/Sites/7/150218_iea-task-49_d_b2_integration_guideline-final.pdf.
  15. Philipp, M. (2016). Steigerung der Energieeffizienz thermischer Prozesse der milchverarbeitenden Industrie: Ein systemischer Ansatz vom Bedarf bis zur Energiequelle. Dissertation. Produktion & Energie, Vol. 12. Kassel: Kassel University Press.Google Scholar
  16. Philipp, M., & Schlosser, F. (2016). Forward-looking planning processes for more energy efficiency: Vorausschauende Planungsprozesse für mehr Energieeffizienz. This project (HA-Projekt-Nr.: 411/14-01) is funded in the framework of Hessen ModellProjekte, financed with funds of LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3: KMU-Verbundvorhaben (State Offensive for the Development of Scientific and Economic Excellence). Kassel.Google Scholar
  17. Philipp, M., & Schumm, G. (2014). Energy efficiency and emission reduction in the dairy industry through smart connections of heat flows: Energie- und Klimaeffizienz in der Milchindustrie durch intelligente Kopplung von Energieströmen. Funded by: Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz; Bundesanstalt für Landwirtschaft und Ernährung; PT Innovationsförderung. Förderkennzeichen: 2817401911. Kassel.Google Scholar
  18. Philipp, M., Schumm, G., Peesel, R.-H., & Hesselbach, J. (2016). Industrial energy supply structures with low primary energy demand and emissions for different countries considering the Energiewende. Chemical Engineering Transactions, 175–180 (2016). doi: https://doi.org/10.3303/CET1652030.
  19. Philipp, M., Schumm, G., Schlosser, F., Holzhammer, U., Walmsley, T. G., & Atkins, M. J. (2017). System efficiency in dairies, potentials and technical implementation of energy efficiency and demand response. Talk. E-world. Essen.Google Scholar
  20. Ramirez, C. A., Patel, M., & Blok, K. (2006). From fluid milk to milk powder: energy use and energy efficiency in the European dairy industry. Energy, 31(12), 1984–2004.  https://doi.org/10.1016/j.energy.2005.10.014.CrossRefGoogle Scholar
  21. Schleswig-Holstein. (2015). Abregelung von Strom aus Erneuerbaren Energien und daraus resultierende Entschädigungsansprüche in den Jahren 2010 bis 2014. Kiel. http://www.schleswig-holstein.de/DE/Schwerpunkte/Energiewende/Strom/pdf/einspeisemanagement_faktenpapier18122015.pdf?__blob=publicationFile&v=2. Accessed 25 Mar 2017.
  22. Schumm, G. & Schlosser, F. (2016). Climate-friendly food processing through cogeneration-oriented production processes: Klimafreundliche Lebensmittel durch KWK-gerechte Produktionsprozesse: This project (HA-Projekt-Nr.: 415/14-05) is funded in the framework of Hessen ModellProjekte, financed with funds of LOEWE - Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3: KMU-Verbundvorhaben (State Offensive for the Development of Scientific and Economic Excellence). Kassel.Google Scholar
  23. Schumm, G., Philipp, M., & Hesselbach, J. (2015). German utility model: Hybrid-Erhitzer – HE, 2015.Google Scholar
  24. Schumm, G., Philipp, M., Schlosser, F., Hesselbach, J., Walmsley, T. G., Atkins, M. J. (2016a). Hybrid-heating-systems for optimized integration of low-temperature-heat and renewable energy. Chemical Engineering Transactions, 1087–1092 (2016). doi: https://doi.org/10.3303/CET1652182.
  25. Schumm, G., Philipp, M., Schlosser, F., Hesselbach, J., Walmsley, T. G. & Atkins, M. J. (2016b). Hardware in the loop evaluation of a hybrid heating system for increased energy efficiency and management. ECEEE Industrial Summer Study Proceedings, 575–585 (2016).Google Scholar
  26. Silva, F. V., & Gibbs, P. A. (2009). Principles of thermal processing: pasteurization. In R. Simpson (Ed.), Engineering aspects of thermal food processing (pp. 13–48, Contemporary food engineering). Boca Raton: CRC Press.Google Scholar
  27. Simpson, R. (2009). Engineering aspects of thermal food processing. Contemporary food engineering. Boca Raton: CRC Press.  https://doi.org/10.1201/9781420058598.CrossRefGoogle Scholar
  28. Sun, D.-W. (2012). Thermal food processing: new technologies and quality issues (2nd ed., Contemporary food engineering ed.). Boca Raton: CRC Press.  https://doi.org/10.1201/b12112.
  29. Tarighaleslami, A. H., Walmsley, T. G., Atkins, M. J., Walmsley, M. R. W., Liew, P. Y., & Neale, J. R. (2017). A unified total site heat integration targeting method for isothermal and non-isothermal utilities. Energy, 119, 10–25.  https://doi.org/10.1016/j.energy.2016.12.071.CrossRefGoogle Scholar
  30. Teske, S., Pregger, T., Simon, S., Naegler, T., Graus, W., & Lins, C. (2011). Energy [R]evolution 2010—a sustainable world energy outlook. Energy Efficiency, 4(3), 409–433.  https://doi.org/10.1007/s12053-010-9098-y.CrossRefGoogle Scholar
  31. Vine, E. (2008). Breaking down the silos: the integration of energy efficiency, renewable energy, demand response and climate change. Energy Efficiency, 1(1), 49–63.  https://doi.org/10.1007/s12053-008-9004-z.MathSciNetCrossRefGoogle Scholar
  32. Waheed, M. A., Jekayinfa, S. O., Ojediran, J. O., & Imeokparia, O. E. (2008). Energetic analysis of fruit juice processing operations in Nigeria. Energy, 33(1), 35–45.  https://doi.org/10.1016/j.energy.2007.09.001.CrossRefGoogle Scholar
  33. Walmsley, T. G., Walmsley, M. R. W., Tarighaleslami, A. H., Atkins, M. J., & Neale, J. R. (2015). Integration options for solar thermal with low temperature industrial heat recovery loops. Energy, 90, 113–121.  https://doi.org/10.1016/j.energy.2015.05.080.CrossRefGoogle Scholar
  34. Walmsley, T. G., Atkins, M. J., Walmsley, M. R. W., & Neale, J. R. (2016a). Appropriate placement of vapour recompression in ultra-low energy industrial milk evaporation systems using pinch analysis. Energy, 116, 1269–1281.  https://doi.org/10.1016/j.energy.2016.04.026.CrossRefGoogle Scholar
  35. Walmsley, T. G., Atkins, M. J., Walmsley, M. R. W., Neale, J. R., Philipp, M., Schumm, G., & Peesel, R.-H. (2016b). Total site utility systems optimisation for milk powder production. Chemical Engineering Transactions, 52, 235–240.  https://doi.org/10.3303/ CET1652040.Google Scholar
  36. Wang, L. (2014). Energy efficiency technologies for sustainable food processing. Energy Efficiency, 7(5), 791–810.  https://doi.org/10.1007/s12053-014-9256-8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department Umweltgerechte Produkte und ProzesseUniversität KasselKasselGermany
  2. 2.Insitute of New Energy SystemsTechnische Hochschule IngolstadtIngolstadtGermany
  3. 3.Sustainable Process Integration Laboratory – SPIL, NETME Centre, Faculty of Mechanical EngineeringBrno University of Technology - VUT BrnoBrnoCzech Republic
  4. 4.Energy Research Centre, School of EngineeringUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations