Energy Efficiency

, Volume 11, Issue 4, pp 975–995 | Cite as

Dwelling’s energy saving through the experimental study and modeling of technological interventions in a cold temperate climate of Argentina

Original Article
  • 34 Downloads

Abstract

The present work analyzes the potential of technological and economically feasible interventions performed to decrease the energy consumption in the building sector of the city of Santa Rosa, La Pampa, Argentina (latitude 36° 27′ S and longitude 64° 27′ W). The overall aim of our study is to assess the thermal and energy behavior of a compact conventional construction dwelling in a cold temperate climate zone through in situ measurements, interviews with occupants, and modeling. The specific objectives are to analyze the results of experimental thermal energy monitoring in extreme weather seasons, to audit occupants’ use habits, to simulate and weigh the monitoring real data, to obtain the dwelling’s thermo-physical model, to study the interventions potential through low-energy design strategies (conservation and solar gain), and to carry out an economic analysis of the proposals. The results showed that an envelope with thermal insulation is feasible from the economic point of view when considering neighboring countries’ cost of natural gas (NG). In Argentina, the low value per m3 of NG entails recovering the investment aimed at improving the envelopes’ thermal energy behavior 64 years later, three times the envelopes’ thermal insulation life cycle.

Keywords

Energy consumption Thermal experimental monitoring Low-energy design strategies Economic analysis 

Notes

Compliance with ethical standards

Ethical statement

The manuscript submitted has been prepared according to the journal’s “Instructions for Authors” and checked for all possible inconsistencies and typographical errors. On submission of the manuscript, the authors agree not to withdraw their manuscript at any stage prior to publication.

Regarding Copyright and License Agreement for the submission of this article, we state that

(a) The article submitted is an original work and has neither been published in any other peer-reviewed journal nor is under consideration for publication by any other journal. More so, the work does not contravene any existing copyright or any other third party rights.

(b) The article contains no such material that may be unlawful, defamatory, or which would, if published, in any way whatsoever, violate the terms and conditions as laid down in the agreement.

(c) We have taken due care that the scientific knowledge and all other statements contained in the article conform to true facts.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adigas. (2014). Web page accessed on 24th Agoust 2014. http://www.adigas.com.ar/precios_internacionales.php . (international prices) (in Spanish).
  2. Auliciems, A., & Szokolay, S. (2007). Thermal Comfort, Note 3. In PLEA Notes (2nd ed.).Google Scholar
  3. Balances Energéticos/ Secretaría de Energía/ Ministerio de planificación. (2012). Balance Energético Nacional 2012. Capital Federal: Tecnología de la Información - Secretaría de Energía (in Spanish).Google Scholar
  4. Balaras, C., Droutsa, K., Dascalaki, E., & Kontoyannidis, S. (2005). Heating energy consumption and resulting environmental impact of European apartment buildings. Energy and Building, 37, 329–442.  https://doi.org/10.1016/j.enbuild.2004.08.003.Google Scholar
  5. Beascochea, A., & Filippín, C. (1998). Residencias Bioclimáticas para la Universidad Nacional de La Pampa. Avances en Energías Renovables y Medio Ambiente, 2(1), 03.13–03.16 (in Spanish).Google Scholar
  6. Binda, A., & Lesino, G. (1987). Simulación computacional del comportamiento térmico de edificios para verano. In Actas de la XII Reunión de Trabajo de ASADES, II (pp. 289–296). Buenos Aires, Argentina (in Spanish).Google Scholar
  7. Carlsson-Kanyama, C., Engström, R., & Kok, R. (2005). Indirect and direct energy requirements of city households in Sweden. Journal of Industrial Ecology, 9, 221–235.CrossRefGoogle Scholar
  8. Casermeiro, M., & Saravia, L. (1984). Cálculo térmico horario de edificio solares pasivos. In Actas de la IX Reunión de Trabajo de ASADES (Asociación Argentina de Energía Solar) (pp. 39–45). San Juan, Argentina (in Spanish).Google Scholar
  9. Caso, R., Lesino, G., & Saravia, L. (1986). Mediciones de edificios solares en Cachi y Abdón Castro Tolay. In Actas de la XI Reunión de Trabajo (Asociación Argentina de Energía Solar) (pp. 13–18). San Luis, Argentina (in Spanish).Google Scholar
  10. Climasdeargentina’s Blog. (2009). Web page accessed on 10th July 2009 climasdeargentina. wordpress.com: https://climasdeargentina.wordpress.com.
  11. Corgnati, S., Fabrizio, E., Raimondo, D., & Filippi, M. (2011). Categories of indoor environmental quality and building energy demand for haeting and cooling. Building simulation Journal, 4(2), 97–105.CrossRefGoogle Scholar
  12. CPE-Cooperativa Popular de Electricidad. (2015). Memoria y Balance. Ejercicio Económico y Social N° 82, 2014–2015. Santa Rosa, La Pampa, Argentina (in Spanish).Google Scholar
  13. Czajkowski, J., & Gómez, A. (1994). Diseño bioclimático y economía energética edilicia. Fundamentos y métodos. Editorial de la U.N.L.P. (in Spanish).Google Scholar
  14. Czajkowski, J. D. (2011). Comparación de la demanda de energía en calefacción en Argentina y otros países. In J. Czajkowski, A. Gomez, C. Filippín, C. Vagge, M. Salvetti, M. Diulio, M. Bianciotto, & L. F. UNLP (Eds.), Cuadernos de Arquitectura Sustentable: artículos seleccionados, 2011 (1st ed., pp. 15–24). La Plata: Impresiones Dunken (in Spanish).Google Scholar
  15. Dombaycı, Ö. (2007). The environmental impact of optimum insulation thickness for external walls of buildings. Building and Environment, 42, 3855–3859.  https://doi.org/10.1016/j.buildenv.2006.10.054.CrossRefGoogle Scholar
  16. Duffie, J., & Beckman, W. (1991). Solar engineering of thermal processes (2nd ed.). New York: Wiley Interscience.Google Scholar
  17. Esteves, A., Fernandez, J., Basso, M., Mitchel, J., & de Rosa, C. (1994). Simulación térmica de edificios: aplicación de los modelos Quick y SIMEDIF. In Actas de la XVII Reunión de Trabajo de ASADES (pp. 543–550). Rosario, Argentina (in Spanish).Google Scholar
  18. Fabi, V., Andersen, R. V., Corgnati, S., & Olesen, B. W. (2012). Occupants' window opening behaviour: a literature review of factors influencing occupant behaviour and models. Building and Environment, 58, 188–198.  https://doi.org/10.1016/j.buildenv.2012.07.009.CrossRefGoogle Scholar
  19. Filippín, C., & Beascochea, A. (2007). Performance assessment of low-energy buildings in central Argentina. Energy and Buildings, 39, 546–557.CrossRefGoogle Scholar
  20. Filippín, C., Marek, L., Flores Larsen, S., & Lesino, G. (2007). An energy efficient school for a nature disposed population in arid lands of Central Argentina. Journal of Building Physics, 30(3), 241–260.  https://doi.org/10.1177/1744259107071548.CrossRefGoogle Scholar
  21. Filippín, C., Flores Larsen, S., & Mercado, V. (2011). Winter energy behaviour in multi-family block buildings in a temperate-cold climate in Argentina. Renewable and Sustainable Energy Reviews, 15, 203–219.  https://doi.org/10.1016/j.rser.2010.09.038.CrossRefGoogle Scholar
  22. Filippín, C., Sipowicz, E., & Flores Larsen, S. (2015). Análisis de ciclo de vida de una vivienda auditada en condiciones reales de uso en la region central de Argentina. Energias Renovables y Medio Ambiente, 35, 7–19 (in Spanish).Google Scholar
  23. Flores Larsen, S., & Lesino, G. (2001). A new code for the hour-by-hour thermal behavior simulation of buildings (pp. 75–82). Río de Janeiro, Brasil: Lesino. Seventh International IBPSA Conference On Building Simulation.Google Scholar
  24. Flores Larsen, S., Hernández, A., Lesino, G., & Salvo, N. (2001). Measurement and simulation of the thermal behavior of a massive building with passive solar conditioning. Actas del VII International Building Simulation Congress.Google Scholar
  25. Flores Larsen, S., Filippín, C., Beascochea, A., & Lesino, G. (2008). An experience on integrating monitoring and simulation tools in the design of energy-saving buildings. Energy and Buildings, 40(6), 987–997.CrossRefGoogle Scholar
  26. Flores Larsen, S., Filippín, C., & Lesino, G. (2009). Thermal behavior of building walls in summer: comparison of available analytical methods and experimental results for a case study. Building Simulation, 2(1), 3–18.  https://doi.org/10.1007/S12273-009-9103-6.CrossRefGoogle Scholar
  27. González, A. D. (2009). Energy subsidies in Argentina lead to inequalities and low thermal efficiency. Energies, 2, 769–788.  https://doi.org/10.3390/en20300769.CrossRefGoogle Scholar
  28. González, A., Carlsson-Kanyama, A., Crivelli, C., & Gortari, S. (2007). Residential energy use in one-family households with natural gas provision in a city of the Patagonian Andean region. Energy Policy, 35, 2141–2150.  https://doi.org/10.1016/j.enpol.2006.07.004.CrossRefGoogle Scholar
  29. Gonzalo, G. (2003). Manual de Arquitectura Bioclimatica. Tucumán: Nobuko (in Spanish).Google Scholar
  30. Hernández, A., & Lesino, G. (1993). Análisis de la performance térmica de un prototipo de vivienda liviana: monitoreo y simulación macrodinámica. Actas de la XVI Reunión de Trabajo de ASADES, I (pp. 167–174). La Plata, Argentina (in Spanish).Google Scholar
  31. Hernandez, A., & Lesino, G. (2000). Simulación mediante SIMEDIF del comportamiento térmico de un prototipo de vivienda liviana construido en la Universidad Nacional de Salta. Avances en Energías Renovables y Medio Ambiente, 4(2), 08.29–08.34 (in Spanish).Google Scholar
  32. Hernandez, A., Flores Larsen, S., Salvo, N., & Lesino, G. (1999). Simulación no estacionaria mediante SIMEDIF del ala oeste del edificio de Agronomía de la Universidad Nacional de La Pampa. Avances en Energías Renovables y Medio Ambiente, 3(2), 08.113–08.116 (in Spanish).Google Scholar
  33. INDEC. (2011). Retrieved May 04, 2011, Web page accessed on 25th May 2012 INDEC: http://www.indec.mecon.ar/principal.asp?id_tema=2288.
  34. IRAM-11601. (2002). Norma IRAM 11605 - Aislamiento térmico de edificios. Métodos de Cálculo. Buenos Aires: Instituto Argentino De Normalización Y Certificación (in Spanish).Google Scholar
  35. IRAM-11603. (1996). Norma IRAM 11603: Clasificación bioambiental de la República Argentina. Buenos Aires: Instituto Argentino de Normalización y Certificación (in Spanish).Google Scholar
  36. IRAM-11604. (2001). Norma IRAM 11604: Aislamiento térmico de edificios. Verificación de sus condiciones higrotérmicas. Ahorro de energía en calefacción. Coeficiente volumétrico G de pérdidas de calor. Cálculo y valores límites. Buenos Aires: Instituto Argentino de Normalización y Certificación (in Spanish).Google Scholar
  37. IRAM-11605. (1996). Norma IRAM 11605 - Acondicionamiento termico de edificios. Condiciones de habitabilidad en edificios. Valores maximos de transmitancia termica en cerramientos opacos. Buenos Aires: IRAM, INSTITUTO ARGENTINO DE NORMALIZACIÓN Y CERTIFICACIÓN, Mod. 2002.Google Scholar
  38. IRAM-1793. (2003). Norma IRAM 1793: Thermal insulating materials. Using thickness. Vocabulary and aplication criteria. Buenos Aires: IRAM, INSTITUTO ARGENTINO DE NORMALIZACIÓN Y CERTIFICACIÓN (in Spanish).Google Scholar
  39. Manzoni, C. (2009). La Energía para este invierno. Diario La Nación, Sección Economía - pag. 01–02 (in Spanish). Web page accessed on 24th Mat 2009 http://www.lanacion.com.ar/1131498-la-energia-para-este-invierno#top.
  40. Mascaro, J. L. (1983). Variación de los costos de los edificios con las decisiones arquitectónicas. La Plata: Facultad de Arquitectura y Urbanismo Universidad Nacional de La Plata (in Spanish).Google Scholar
  41. Nawawi, A. H., & Khalil, N. (2008). Post-occupancy evaluation correlated with building occupants’ satisfaction: an approach to performance evaluation of government and public buildings. Journal of Building Appraisal, 4, 59–69.CrossRefGoogle Scholar
  42. New Method 5000 (1994). In: J. Goulding, J. Owen Lewis, T. Steemers, Energy in architecture. The European Passive Solar Handbook (pp. 05.121–05.128) London: B.T. Batsford for the Commission of the European Communities, Directorate General XII for Science, Research and Development.Google Scholar
  43. Omer, A. (2009). Energy efficiency, climate change, buildings and the need for development in renewable energy use. In Buildings and the environment (pp. 91–132). New York: Nova Science Publishers.Google Scholar
  44. Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Building, 40, 394–398.  https://doi.org/10.1016/j.enbuild.2007.03.007.CrossRefGoogle Scholar
  45. Reyes, J., & Evans, J. (1993). Normas de aislación e inercia térmica. Desarrollo y aplicación. Reporte Final. In Actas de la XVI Reunión de Trabajo de ASADES (pp. 141–148). La Plata, Argentina (in Spanish).Google Scholar
  46. Rogers, C. R. (1945). Frontier thinking in guidance (pp. 105–112). San Francisco: University of California: Science Research Associates. Retrieved March 18 2015.Google Scholar
  47. Saidur, R., Masjuki, H., & Jamaluddin, M. (2007). An application of energy and exergy analysis in residential sector of Malaysia. Energy Policy, 35(2), 1050–1063.  https://doi.org/10.1016/j.enpol.2006.02.006.CrossRefGoogle Scholar
  48. Sartori, I., & Hestnes, A. (2007). Energy use in the life cycle of conventional and low-energy buildings: a review article. Energy and Buildings, 39, 249–257.CrossRefGoogle Scholar
  49. Secretaria de Ambiente y Desarrollo Sustentable de la Nacion. (2013). Sistema de indicadores de Desarrollo Sostenible: Version sintetica. Buenos Aires: Secretaria de Ambiente y Desarrollo Sustentable de la Nacion Retrieved 02 Oct 2014, Accessed on http://www.ambiente.gov.ar/archivos/web/Indicadores/image/SIDSA%202013/37-1gr.jpg (in Spanish).Google Scholar
  50. Subsecretaría de Planeamiento. (1994). La Pampa, Argentina. Análisis de la Realidad. In Gobierno de La Pampa (p. 156). Gral Acha, La Pampa: L&M SRL (in Spanish).Google Scholar
  51. Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renewable and Sustainable Energy Reviews, 13, 1819–1835.  https://doi.org/10.1016/j.rser.2008.09.033.CrossRefGoogle Scholar
  52. Yıldız, A.,Gürlek, G., Erkek, M., & Özbalta, N. (2008). Economical and environmental analyses of thermal insulation thickness in buildings. Journal of Thermal Science and Technology, 28(2), 25–34.Google Scholar
  53. Yu, Z., Fung, B. C., Haghighat, F., Yoshino, H., & Morofsky, E. (2011). A systematic procedure to study the influence of occupant behavior on building energy consumption. Energy and Buildings, 43, 1409–1417.  https://doi.org/10.1016/j.enbuild.2011.02.002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  1. 1.Centro Experimental de la Vivienda Económica (CEVE)—CONICETCordoba CapitalArgentina
  2. 2.CONICETSanta RosaArgentina

Personalised recommendations