Energy Efficiency

, Volume 11, Issue 5, pp 1083–1101 | Cite as

Necessary but not sufficient: the role of energy efficiency in industrial sector low-carbon transformation

Original Article

Abstract

As the primary means for growth and development over the past two centuries, industry has played a central role in generating our current Anthropocene. The increasing impacts of climate change bring industry to the fore as the largest emitter of greenhouse gases and as a potential manufacturer of transformational technologies and infrastructure. While energy efficiency improvements are driving industrial sector emissions and cost reductions, additional switching away from fossil fuels and capture of carbon emissions is needed for climate stabilization.

Keywords

Industry Low-carbon production Efficiency Voluntary programs Greenhouse gas Mitigation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aden, N., Bradbury, J., & Tompkins, F. (2013). Energy efficiency in U.S. manufacturing: the case of Midwest pulp and paper mills. Washington, DC: World Resources Institute Report. http://pdf.wri.org/energy-efficiency-inus-manufacturing-midwest-pulp-and-paper.pdf http://pdf.wri.org/energy-efficiency-inus-manufacturing-midwest-pulp-and-paper.pdf.
  2. Akimoto, K., Sano, F., Oda, J., Homma, T., Rout, U. K., & Tomoda, T. (2008). Global emission reductions through a sectoral intensity target scheme. Climate Policy, 8, S46–S59.CrossRefGoogle Scholar
  3. Allwood, J. M., Cullen, J. M., & Milford, R. L. (2010). Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental Science and Technology, 44(6), 1888–1894.CrossRefGoogle Scholar
  4. Ang, B. W., & Xu, X. Y. (2013). Tracking industrial energy efficiency trends using index decomposition analysis. Energy Economics, 40, 1014–1021.CrossRefGoogle Scholar
  5. Baldwin, R. (2013). Trade and industrialization after globalization’s second unbundling: how building and joining a supply chain are different and why it matters. In R. C. Feenstra & A. M. Taylor (Eds.), Globalization in an age of crisis: multilateral economic cooperation in the twenty-first century. Chicago: University of Chicago Press.Google Scholar
  6. Baldwin, R., & Lopez-Gonzalez, J. (2015). Supply-chain trade: a portrait of global patterns and several testable hypotheses. The World Economy, 38, 1682–1720.  https://doi.org/10.1111/twec.12189.CrossRefGoogle Scholar
  7. Belzer, D. B. (2014). A comprehensive system of energy intensity indicators for the U.S.: methods, data, and key trends. PNNL-22267.Google Scholar
  8. Borck, J. C., & Coglianese, C. (2009). Voluntary environmental programs: assessing their effectiveness. Annual Review of Environment and Resources, 34, 305–324.CrossRefGoogle Scholar
  9. Bossart, A. (2011). Better ROI and Lower Emissions– Smart Decisions Based on Energy Efficiency Facts Reduce the Emissions and Improve Your OPEX. Waste Management, 2, 285–301 ISBN: 978-3-935317-69-6. http://www.vivis.de/fachbuecher/english-books/156-waste-management-volume-2.Google Scholar
  10. Boyd, G., & Golden, J. S. (2016). Enhancing firm GHG reporting: using index numbers to report corporate level measures of sustainability. International Journal of Green Technology, 2, 29–37.CrossRefGoogle Scholar
  11. Boyd, G., Kuzmenko, T., Szemely, B., & Zhang, G. (2011). Preliminary analysis of the distribution of carbon and energy intensity for 27 energy intensive trade exposed industrial sectors. Duke Environmental Economics Working Paper EE 11–03. Durham: Duke University.Google Scholar
  12. BP (2017). Statistical Review of World Energy | Energy Economics | BP Global. Bp.com. Accessed 11 Aug 2017. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
  13. Charles, K. K., Hurst, E., & Notowidigdo, M. J. (2016). The masking of the decline in manufacturing employment by the housing bubble. Journal of Economic Perspectives, 30(2), 179–200.CrossRefGoogle Scholar
  14. Clarke, L., Jiang, K., Akimoto, K., Babiker, M., Blanford, G., Fisher-Vanden, K., Hourcade, J.-C., Krey, V., Kriegler, E., Löschel, A., McCollum, D., Paltsev, S., Rose, S., Shukla, P. R., Tavoni, M., van der Zwaan, B. C. C., & van Vuuren, D. P. (2014). Assessing transformation pathways. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  15. Cullen, J. M., Allwood, J. M., & Bamback, M. D. (2012). Mapping the global flow of steel: from steelmaking to end-use goods. Environmental Science & Technology, 46, 13048–13055.CrossRefGoogle Scholar
  16. Doda, B., Gennaioli, C., Gouldson, A., Grover, D., & Sullivan, R. (2015). Are corporate carbon management practices reducing corporate carbon emissions? Corporate Social Responsibility and Environmental Management.  https://doi.org/10.1002/csr.1369
  17. Farla, J., Blok, K., & Schipper, L. (1997). Energy efficiency developments in the pulp and paper industry: a cross-country comparison using physical production data. Energy Policy, 25, 745–758.CrossRefGoogle Scholar
  18. Food and Agriculture Organization of the United Nations (FAO) (2016). FAOSTAT. http://www.fao.org/faostat/en/#data/QC.
  19. Fawcett, A. A., Iyer, G. C., Clarke, L. E., Edmonds, J. A., Hultman, N. E., McJeon, H. C., Rogelj, J., Schuler, R., Alsalam, J., Asrar, G. R., Creason, J., Jeong, M., McFarland, J., Mundra, A., & Shi, W. J. (2015). Can Paris pledges avert severe climate change? Science, 350(6265), 1168–1169.CrossRefGoogle Scholar
  20. Fischedick, M., Roy, J., Abdel-Aziz, A., Acquaye, A., Allwood, J. M., Ceron, J.-P., Geng, Y., Kheshgi, H., Lanza, A., Perczyk, D., Price, L., Santalla, E., Sheinbaum, C., & Tanaka, K. (2014). Industry. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, & J. C. Minx (Eds.), Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  21. Fishman, T., Schandl, H., & Tanikawa, H. (2016). Stochastic analysis and forecasts of the patterns of speed, acceleration, and levels of material stock accumulation in society. Environmental Science & Technology, 50, 3729–3737.  https://doi.org/10.1021/acs.est.5b05790.CrossRefGoogle Scholar
  22. Fugii, H., & Managi, S. (2015). Optimal production resource allocation for CO2 emissions reduction in manufacturing sectors. Global Environmental Change, 35, 505–513.CrossRefGoogle Scholar
  23. Geden, O. (2016). An actionable climate target. Nature Geoscience.  https://doi.org/10.1038/ngeo2699.
  24. Groenenberg, H., Phylipsen, D., & Blok, K. (2001). Differentiating commitments world wide: global differentiation of GHG emissions reductions based on the Triptych approach—a preliminary assessment. Energy Policy, 29(12), 1007–1030.  https://doi.org/10.1016/S0301-4215(01)00027-1.CrossRefGoogle Scholar
  25. IEA. (2009). Energy technology transitions for industry. Strategies for the next industrial revolution. Paris: International Energy Agency.Google Scholar
  26. IEA (2012). CO2 emissions from fuel combustion. Beyond 2020 Online Database. 2012 edition. Paris: International Energy Agency.Google Scholar
  27. IEA. (2016). Energy, climate change and environment: 2016 insights. Paris: International Energy Agency.Google Scholar
  28. IEA. (2017). Energy technology perspectives 2017. Paris: International Energy Agency.CrossRefGoogle Scholar
  29. JRC/PBL (2013). Emission Database for Global Atmospheric Research (EDGAR), Release Version 4.2 FT2010. European Commission, Joint Research Centre (JRC) / PBL Netherlands Environmental Assessment Agency.Google Scholar
  30. Kopidou, D., Tsakanikas, A., & Diakoulaki, D. (2016). Common trends and drivers of CO2 emissions and employment: a decomposition analysis in the industrial sector of selected European Union countries. Journal of Cleaner Production, 112, 4159–4172.CrossRefGoogle Scholar
  31. Krabbe, O., Linthorst, G., Blok, K., Crijns-Graus, W., van Vuuren, D. P., Hohne, N., Faria, P., Aden, N., & Pineda, A. C. (2015). Aligning corporate greenhouse-gas emissions targets with climate goals. Nature Climate Change, 5, 1057–1060.  https://doi.org/10.1038/nclimate2770.CrossRefGoogle Scholar
  32. Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., O’Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., & Zaehle, S. (2016). Global carbon budget 2016. Earth System Science Data, 8, 605–649.  https://doi.org/10.5194/essd-8-605-2016 http://www.earth-syst-sci-data.net/8/605/2016/essd-8-605-2016.pdf.CrossRefGoogle Scholar
  33. Matos, G. R., (2015). Historical global statistics for mineral and material commodities (2015 version): U.S. Geological Survey Data Series 896, at  https://doi.org/10.3133/ds896.
  34. McKinsey and Company (2009). Pathways to a low-carbon economy: version 2 of the global greenhouse gas abatement cost curve. McKinsey Report.Google Scholar
  35. Nordhaus, WD. (1977). Economic growth and climate: the carbon dioxide problem. The American Economic Review, 67(1):341–346. Papers and Proceedings of the Eighty-ninth Annual Meeting of the American Economic Association.Google Scholar
  36. OECD (2015). Excess capacity in the global steel industry and the implications of new investment projects. OECD Science, Technology and Industry Policy Papers, No. 18, OECD Publishing.Google Scholar
  37. Park, S. H. (1992). Decomposition of industrial energy consumption: an alternative method. Energy Economics, 14, 265–270.CrossRefGoogle Scholar
  38. Pauliuk, S., Milford, R. L., Muller, D. B., & Allwood, J. M. (2013). The Steel Scrap Age. Environmental Science and Technology, 2013(47), 3448–3454.  https://doi.org/10.1021/es303149z.CrossRefGoogle Scholar
  39. Randers, J. (2012). Greenhouse gas emissions per unit of value added (GEVA)—a corporate guide to voluntary climate action. Energy Policy, 48, 46–55.CrossRefGoogle Scholar
  40. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H., Nykvist, B., De Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., & Foley, J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14(2), 32 http://www.ecologyandsociety.org/vol14/iss2/art32/.CrossRefGoogle Scholar
  41. Rodrik, D. (2016). Premature deindustrialization. Journal of Economic Growth, 21, 1–33.  https://doi.org/10.1007/s10887-015-9122-3.CrossRefGoogle Scholar
  42. Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N. P., van Vuuren, D. P., Riahi, K., Allen, M., & Knutti, R. (2016). Differences between carbon budget estimates unravelled. Nature Climate Change, 6, 245–252.CrossRefGoogle Scholar
  43. Sugiyama, M., Akashi, O., Wada, K., Kanudia, A., Li, J., & Weyant, J. (2014). Energy efficiency potentials for global climate change mitigation. Climatic Change, 123, 397–411.  https://doi.org/10.1007/s10584-013-0874-5.CrossRefGoogle Scholar
  44. United Nations Environment Programme (UNEP) (2013). Global chemicals outlook—towards sound management of chemicals. ISBN: 978-92-807-3320-4. http://www.unep.org/chemicalsandwaste/sites/unep.org.chemicalsandwaste/files/publications/GCO_web.pdf
  45. United States Bureau of Labor, Bureau of Labor Statistics (BLS) (2016). Occupational Employment Statistics. https://www.bls.gov/oes/.
  46. United States Department of Energy, Energy Information Administration (EIA) (2017a). Monthly Energy Review (MER). https://www.eia.gov/totalenergy/data/monthly/.
  47. United States Department of Energy, Energy Information Administration (EIA) (2017b). Annual Energy Outlook (AEO). https://www.eia.gov/outlooks/aeo/.
  48. United States Department of Commerce, Bureau of Economic Analysis (BEA) (2006). Employment Estimates for 1948-1997 Based on the North American Industry Classification System. “GDPbyInd_VA_NAICS_47to97R.xls” via http://www.bea.gov/industry/NAICSemployment_datarelease.htm.
  49. United States Department of Commerce, Bureau of Economic Analysis (BEA) (2017). Gross-Domestic-Product-(GDP)-by-Industry Data. https://www.bea.gov/industry/gdpbyind_data.htm.
  50. United States Geological Survey (USGS) (2016). Minerals Yearbook 2016. https://minerals.usgs.gov/minerals/pubs/myb.html.
  51. United States Environmental Protection Agency (EPA) (2017). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2015. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2015.
  52. Victor, D. G., & Kennel, C. F. (2014). Climate policy: ditch the 2 °C warming goal. Nature, 514, 30–31.  https://doi.org/10.1038/514030a.CrossRefGoogle Scholar
  53. World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) (2013). A Corporate Accounting and Reporting Standard, Revised Edition. https://www.ghgprotocol.org/standards/corporate-standard.
  54. World Steel Association (WSA) (2016). Steel Statistical Yearbook 2016. https://www.worldsteel.org/steel-bytopic/statistics/steel-statistical-yearbook-.html.
  55. Worrell, E., Price, L., Martin, N., Farla, J., & Schaeffer, R. (1997). Energy Intensity in the Iron and Steel Industry: A Comparison of Physical and Economic Indicators. Energy Policy, Cross-country comparisons of indicators of energy use, energy efficiency and CO2 emissions. 25(7), 727–44.  https://doi.org/10.1016/S0301-4215(97)00064-5.

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Energy & Resources GroupUniversity of CaliforniaBerkeleyUSA
  2. 2.World Resources InstituteWashingtonUSA

Personalised recommendations