Residential photovoltaic self-consumption: Identifying representative household groups based on a cluster analysis of hourly smart-meter data

Original Article

Abstract

The on-site generation and direct consumption of electricity, so-called self-consumption, with a combined photovoltaic (PV) and battery storage system is becoming increasingly profitable for private households. The profitability of PV self-consumption system largely depends on the match of PV output and the household’s electricity consumption. In energy system modelling, the household’s consumption behaviour is represented by means of a standard load profile. However, the household sector’s heterogeneity is not reflected in one single profile, and the use of only one load profile results in a misjudgement of the profitability of self-consumption. In this study, we present a set of representative household groups that better represent the heterogeneous residential consumption behaviour. The household groups were compiled through the cluster analysis of smart-meter data based on hourly electricity consumption, using household characteristics as explanatory variables. Between the average load profiles of the groups, significant differences were found. Subsequently to the clustering, self-consumption based on a combined PV and battery system was simulated for each household. We found that the achievable level of self-consumption also differs between the groups, which in turn affect the profitability of the PV and battery systems. A statistical analysis revealed that employment and the presence of children are distinguishing factors for the different types of self-consumers. These results suggest that (i) the residential sector is not well represented by a single standard load profile, particularly so in the context of self-consumption modelling. (ii) Different self-consumer types can be identified through socio-demographic characteristics: We found that unemployed households achieve the highest self-sufficiency rates with an average of 40%, the lowest rates with 30% on average occur within households of educated families. (iii) Although the discrepancies are significant, the effect of these differences on profitability is still limited under the current market conditions.

Keywords

Cluster analysis Smart-meter data Standard load profile Self-sufficiency 

Notes

Acknowledgements

This work has been financially supported by the German Federal Ministry for Economic Affairs and Energy in the context of a project “Flexible Nachfrage als wichtiger Beitrag zur Energiewende und Baustein in der Energiesystemanalyse” as a part of the 6. Energieforschungsprogramm. Additionally, we would like to thank Tobias Fleiter, Jan Kersting and Katharina Wohlfarth for their input and valuable discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Azad, S., Ali, A., & Wolfs, P. (2014). Identification of typical load profiles using k-means clustering algorithm, Computer Science and Engineering (APWC on CSE), 2014 Asia-Pacific World Congress on. IEEE, 2014. S, pp. 1–6.Google Scholar
  2. BDEW. (2010). Energie-Info. Berlin: Energieverbrauch im Haushalt. BDEW-Datenkatalog.Google Scholar
  3. BDEW. (2016). BDEW-Strompreisanalysen Mai 2016. Berlin: Haushalte und Industrie.Google Scholar
  4. Bossmann, T., Pfluger, B., & Wietschel, M. (2013). The shape matters! How structural changes in the electricity load curve affect optimal investments in generation capacity, 10th international conference on the European Energy Market (EEM), Stockholm.Google Scholar
  5. Bode, S., Grooscurth, H. (2013). Zur vermeintlichen “Grid Parity” von Photovoltaik-Anlagen, energiewirtschaftliche Tagesfragen 2013, H. 7, p. 39–43.Google Scholar
  6. Breyer, C., & Gerlach, A. (2013). Global overview on grid-parity. Prog. Photovolt: Res. Appl., 21, 121–136.CrossRefGoogle Scholar
  7. Bruch, M., & Müller, M. (2014). Calculations of the cost-effectiveness of a PV battery system. Energy Procedia, 46, 262–270.CrossRefGoogle Scholar
  8. Campoccia, A., Dusonchet, L., Telaretti, E., & Zizzo, G. (2013). An analysis of feed’in tariffs for solar PV in six representative countries of the European Union. Solar Energy, 107, 530–542.CrossRefGoogle Scholar
  9. Carmo, C., & Christensen, T. (2016). Cluster analysis of residential heat load profiles and the role of technical and household characteristics. Energy and Buildings, 125, 171–180.CrossRefGoogle Scholar
  10. DWD (2016). Climate Data Centers (CDC) of the German Meteorological Service. Accessed 25.7.2016. ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/hourly/.
  11. Elsland, R., T. Boßmann, A.-L. Klingler, N. Friedrichsen, & M. Klobasa (2015). Mittelfristprognose zur Deutschland-weiten Stromabgabe an Letztverbraucher für die Kalenderjahre 2016 bis 2020. Fraunhofer ISI. Study commissioned by the German Transmission Grid Operators.Google Scholar
  12. EU Commission (2015). Best practices on renewable energy self-consumption, SWD 141 final, Brussels.Google Scholar
  13. Fahrmeir, L., Kneib, T., & Lang, S. (2009). Regression–Modelle, Methoden und Anwendungen. Berlin Heidelberg: Springer.MATHGoogle Scholar
  14. Flath, C., Nicolay, D., Conte, T., Dinther, C. V., & Filipova-Neumann, L. (2012). Cluster analysis of smart metering data–an implementation in Practice, BISE-Research paper, pp. 31–39.Google Scholar
  15. Gerblinger, A., Finkel, M., Witzmann, R. (2014). Entwicklung und Evaluierung von neuen Standardlastprofilen für Haushaltskunden, 13. Symposium Energieinnovationen, Graz.Google Scholar
  16. Gouveia, J., & Seixas, J. (2016). Unraveling electricity consumption profiles in households through clusters: combining smart meters and door-to-door surveys. Energy and Buildings, 116, 666–676.CrossRefGoogle Scholar
  17. Haben, S., Singleton, C., & Grindrod, P. (2016). Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Transactions on Smart Grid, 7(1), 136–144.CrossRefGoogle Scholar
  18. Hayn, M., Bertsch, V., & Fichtner, W. (2014). Electricity load profiles in Europe: the importance of household segmentation. Energy Research & Social Science, 3, 30–45.CrossRefGoogle Scholar
  19. Hinterstocker, M., Roon, S., & Rau, M. (2014). Bewertung der aktuellen Standardlastprofile österreichs und analyse zukünftiger Anpassungsmöglichkeiten im Strommarkt, 13. Symposium Energieinnovationen, Graz.Google Scholar
  20. Hoppmann, J., Volland, J., Schmidt, T., & Hoffmann, V. (2014). The economic viability of battery storage for residential solar photovoltaic systems—a review and simulation model. Renewable and Sustainable Energy Reviews, 39, 1101–1118.CrossRefGoogle Scholar
  21. Intelliekon (2017). Website of the Intelliekon project with publications and presentations about the project. www.intelliekon.de. Accessed 12.4.2017.
  22. Jägemann, C., Hagspiel, S., Lindenberger, D. (2013), The economic inefficiency of grid parity: the case of German PV, EWI Working Paper, No. 13/19.Google Scholar
  23. Kairies, K., Haberschusz, D., Magnor, D., Leuthold, M., Badeda, J., & Sauer, D. (2015). Wissenschaftliches Mess- und Evaluierungsprogramm Solarstromspeicher. Jahresbericht 2015. Aachen: RWTH.Google Scholar
  24. Kavousian, A., Rajagopal, R., Fischer, M. (2013), Determinants of residential electricity conumption: using smart meter data to examine the effect of climate, building charachteristics, appliance stock, and occupants’ behavior. Energy, 55, 184–194.Google Scholar
  25. Keitsch, K., Kondziella, H., Bruckner, T. (2016). Methodology for extracting dynamic standard load profiles from smart meter data, 14. Symposium Energieinnovationen, Graz.Google Scholar
  26. Kim, Y. I., Shin, J. H., Song, J. J., & Yang, I. K. (2009). Customer clustering and TDLP (typical daily load profile) generation using the clustering algorithm. In Transmission & Distribution Conference & Exposition: Asia and Pacific, pp. 1–4, IEEE.Google Scholar
  27. Klingler, A., & Marwitz, S. (2016). Can residential self-consumption contribute to load reduction in low-voltage grids? 14. Symposium energieinnovationen, Graz.Google Scholar
  28. Klingler, A., Schuhmacher, F., & Wohlfarth, K. (2016). Identifying representative types of residential electricity consumers—a cluster analysis of hourly smart meter data, 4th European Conference on Behaviour and Energy Efficiency (Behave 2016), Coimbra.Google Scholar
  29. Lund, P. (2015). Energy policy planning near grid parity using a price-driven technology penetration model. Technological Forecasting and Social Change, 90, 389–399.CrossRefGoogle Scholar
  30. Luthander, R., Widén, J., Munkhammar, J., & Lingfors, D. (2016). Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment. Energy, 112, 221–231.CrossRefGoogle Scholar
  31. May, N., & Neuhoff, K. (2016). Eigenversorgung mit Solarstrom—ein Treiber der Energiewende? DIW Roundup: Politik im Fokus, No. 89.Google Scholar
  32. McLoughlin, F., Duffy, A., & Conlon, M. (2012). Characterising domestic electricity consumption patterns by dwelling and occupant socio-economoic variables: an Irish case study. Energy and Buildings, 48, 240–248.CrossRefGoogle Scholar
  33. Meier, H., Fünfgeld, C., Adam, T., & Schieferdecker, B. (1999), Repräsentative VDEW-Lastprofile, VDEW Materialien M-32/99, Frankfurt.Google Scholar
  34. Moshövel, J., Kairies, K., Magnor, D., Leuthold, M., Bost, M., Gährs, S., Szczechowicz, E., Cramer, M., & Sauer, D. (2015). Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption. Applied Energy, 137, 567–575.CrossRefGoogle Scholar
  35. Munoz, L., Huijben, J., Verhees, B., & Verbon, G. (2014). The power of grid parity: a discursive approach. Technological Forecasting and Social Change, 87, 179–190.CrossRefGoogle Scholar
  36. Mutanen, A., Ruska, M., Repo, S., & Jarventausta, P. (2011). Customer classification and load profiling method for distribution systems. IEEE Transactions on Power Delivery, 26(3), 1755–1763.CrossRefGoogle Scholar
  37. Parra, D., Walkers, G., & Gillot, M. (2014). Modeling of PV generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling. Sustainable Cities and Society, 10, 1–10.CrossRefGoogle Scholar
  38. Rhodes, J., Wesley, C., Upshaw, C., Edgar, T., & Webber, M. (2014). Clustering analysis of residential electricity demand profiles. Applied Energy, 135, 461–471.CrossRefGoogle Scholar
  39. Rodrigues, F., Duarte, J., Figueiredo, V., Vale, Z., & Cordeiro, M. (2003). A comparative analysis of clustering algorithms, applied to load profiling, Proceedings of MLDM, pp. 73–85, Leipzig.Google Scholar
  40. Schleich, J., Brunner, M., Götz, K., Klobasa, M., Gölz, S., & Sunderer, G. (2011). Smart metering in Germany—results of providing feedback information in a field trial. ECEE Summer Study, 2011, 1667–1674.Google Scholar
  41. Schubert, G. (2012). Modelling hourly electricity generation from PV and wind plants in Europe, 9th international Conference on the European Energy Market (EEM), Florence.Google Scholar
  42. Statistisches Bundesamt (2013). Wirtschaftsrechnungen–Einkommens- und Verbrauchsstichprobe Wohnverhältnisse privater Haushalte. Fachserie 15 Sonderheft 1. Wiesbaden.Google Scholar
  43. Stenzel, P., Lissen, J., & Fleer, J. (2015). Impact of different load profiles on cost optimal system designs for battery supported PV systems, the 7th international conference on applied energy—ICAE2015. Energy Procedia, 75, 1862–1868.CrossRefGoogle Scholar
  44. Waffenschmidt, E. (2014). Dimensioning of decentralized photovoltaic storages with limited feed-in power and their impact on the distribution grid. Energy Procedia, 46, 78–87.CrossRefGoogle Scholar
  45. Weniger, J., Bergner, J., Tjaden, T., & Quaschning, V. (2015). Dezentrale Solarstromspeicher für die Energiewende. Berlin: Hochschule für Technik und Wirtschaft Berlin.Google Scholar
  46. Yohanis, Y., Mondol, J., Wright, A., Norton, B. (2008). Real-life energy use in the UK: how occupancy and dwelling characteristics affect domestic electricity use. Energy and Buildings, 40, 1053–1059.Google Scholar
  47. Zhou, K., Yang, S., & Shen, C. (2013). A review of electric load classification in smart grid environment. Renewable and Sustainable Energy Reviews, 24, 103–110.CrossRefGoogle Scholar
  48. Zhou, K., Fu, C., & Yang, S. (2016). Big data driven smart energy management: From big data to big insights. Renewable and Sustainable Energy Review, 56, 215–225.CrossRefGoogle Scholar
  49. Zhou, K., Yang, S., & Shao, Z. (2017). Household monthly electricity consumption pattern mining: a fuzzy clustering-based model and a case study. Journal of Cleaner Production, 141, 900–908.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Systems and Innovation ResearchKarlsruheGermany

Personalised recommendations