Skip to main content
Log in

Natural ventilation and indoor air quality in educational buildings: experimental assessment and improvement strategies

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Indoor environmental conditions in classrooms, in particular temperature and indoor air quality, influence students’ health, attitude and performance. In recent years, several studies regarding indoor environmental quality of classrooms were published and natural ventilation proved to have great potential, particularly in southern European climate. This research aimed to evaluate indoor environmental conditions in eight schools and to assess their improvement potential by simple natural ventilation strategies. Temperature, relative humidity and carbon dioxide concentration were measured in 32 classrooms. Ventilation performance of the classrooms was characterized using two techniques, first by fan pressurization measurements of the envelope airtightness and later by tracer gas measurements of the air change rate assuming different envelope conditions. A total of 110 tracer gas measurements were made and the results validated ventilation protocols that were tested afterward. The results of the ventilation protocol implementation were encouraging and, overall, a decrease on the CO2 concentration was observed without modifying the comfort conditions. Nevertheless, additional measurements must be performed for winter conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

H :

Height of a window [cm]

max:

Maximum

min:

Minimum

n :

Air flow exponent [−]

n 50 :

Air change rate at 50 Pa [h−1]

p :

Pressure [Pa]

r :

Correlation [%]

w :

Width of a window [cm]

wv:

Wind velocity [m/s]

A :

Area [m2]

ACH:

Air change rate [h−1]

CO2 :

Carbon dioxide

HVAC:

Heating, ventilation and air conditioning

IAQ:

Indoor air quality

IEQ:

Indoor environmental quality

MV:

Mechanical ventilation

N :

Sample size

NV:

Natural ventilation

NVP:

No ventilation protocol

PMV:

Predicted mean vote

RH:

Relative humidity [%]

T :

Temperature [°C]

VP:

Ventilation protocol

Δ :

Difference

Σ :

Standard deviation

μ :

Mean

av:

Average

ext:

Exterior

int:

Interior

occ:

Period of occupation

References

  • Almeida, R. M. S. F., & de Freitas, V. P. (2014). Indoor environmental quality of classrooms in Southern European climate. Energy and Buildings, 81(0), 127–140. doi:10.1016/j.enbuild.2014.06.020.

    Article  Google Scholar 

  • Almeida, R. M. S. F., Ramos, N. M. M., & de Freitas, V. P. (2016). Thermal comfort models and pupils’ perception in free-running school buildings of a mild climate country. Energy and Buildings, 111, 64–75. doi:10.1016/j.enbuild.2015.09.066.

    Article  Google Scholar 

  • Al-Rashidi, K., Loveday, D., & Al-Mutawa, N. (2012). Impact of ventilation modes on carbon dioxide concentration levels in Kuwait classrooms. Energy and Buildings, 47(0), 540–549. doi:10.1016/j.enbuild.2011.12.030.

    Article  Google Scholar 

  • ASHRAE ( 2013). ASHRAE standard 62.1-2013 ventilation for acceptable indoor air quality. Atlanta GA.

  • ASTM (2011). Standard test method for determining air change in a single zone by means of a tracer gas dilution. In E 741. West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  • ASTM (2012). Standard guide for using indoor carbon dioxide concentrations to evaluate indoor air quality and ventilation. ASTM D 6245-12. USA: American Society for Testing and Materials

  • Bakó-Biró, Z., Clements-Croome, D. J., Kochhar, N., Awbi, H. B., & Williams, M. J. (2012). Ventilation rates in schools and pupils’ performance. Building and Environment, 48(0), 215–223. doi:10.1016/j.buildenv.2011.08.018.

    Article  Google Scholar 

  • Beisteiner, A., & Coley, D. A. (2003). Carbon dioxide levels and summertime ventilation rates in UK schools. International Journal of Ventilation, 1(3), 181–187.

    Article  Google Scholar 

  • CEN (2001). EN 13829: thermal performance of buildings—determination of air permeability of buildings—Fan pressurization method. Brussels: CEN—European Committee for Standardization.

    Google Scholar 

  • CEN (2006). PD CEN/TR 14788:2006—ventilation for buildings. Design and dimensioning of residential ventilation systems. Brussels: CEN—European Committee for Standardization.

    Google Scholar 

  • Coley, D. A., & Beisteiner, A. (2002). Carbon dioxide levels and ventilation rates in schools. International Journal of Ventilation, 1(1), 45–52.

    Article  Google Scholar 

  • Conceição, E. Z. E., & Lúcio, M. M. J. R. (2006). Air quality inside a school building: air exchange monitoring, evolution of carbon dioxide and assessment of ventilation strategies. The International Journal of Ventilation, 5(2), 259–270.

    Article  Google Scholar 

  • Conceição, E. Z. E., Gomes, J. M. M., Antão, N. H., & Lúcio, M. M. J. R. (2012). Application of a developed adaptive model in the evaluation of thermal comfort in ventilated kindergarten occupied spaces. Building and Environment, 50(0), 190–201. doi:10.1016/j.buildenv.2011.10.013.

    Article  Google Scholar 

  • Corgnati, S. P., Ansaldi, R., & Filippi, M. (2009). Thermal comfort in Italian classrooms under free running conditions during mid seasons: assessment through objective and subjective approaches. Building and Environment, 44(4), 785–792. doi:10.1016/j.buildenv.2008.05.023.

    Article  Google Scholar 

  • De Giuli, V., Da Pos, O., & De Carli, M. (2012). Indoor environmental quality and pupil perception in Italian primary schools. Building and Environment, 56(0), 335–345. doi:10.1016/j.buildenv.2012.03.024.

    Article  Google Scholar 

  • Franchimon, F., Dijken, F. v., Pernot, C. E. E., & Bronswijk, J. E. M. H. v. (2009) Air-exchange rate under debate. In Healthy Buildings 2009, Syracuse, NY, USA, September 13–17.

  • Frontczak, M., & Wargocki, P. (2011). Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46(4), 922–937. doi:10.1016/j.buildenv.2010.10.021.

    Article  Google Scholar 

  • Gaitani, N., & Santamouris, M. (2013) Energy efficiency & IAQ aspects of the school buildings in Greece. In 34th AIVC Conference, Athens, Greece, September 2013.

  • Gao, J., Wargocki, P., & Wang, Y. (2014). Ventilation system type, classroom environmental quality and pupils’ perceptions and symptoms. Building and Environment, 75(0), 46–57. doi:10.1016/j.buildenv.2014.01.015.

    Article  Google Scholar 

  • Griffiths, M., & Eftekhari, M. (2008). Control of CO2 in a naturally ventilated classroom. Energy and Buildings, 40(4), 556–560. doi:10.1016/j.enbuild.2007.04.013.

    Article  Google Scholar 

  • Guedes, M. C., Matias, L., & Santos, C. P. (2009). Thermal comfort criteria and building design: field work in Portugal. Renewable Energy, 34(11), 2357–2361. doi:10.1016/j.renene.2009.03.004.

    Article  Google Scholar 

  • Harvey, L. D. D. (2009). Reducing energy use in the buildings sector: measures, costs, and examples. Energy Efficiency, 2(2), 139–163.

    Article  MathSciNet  Google Scholar 

  • Haverinen-Shaughnessy, U., Moschandreas, D. J., & Shaughnessy, R. J. (2011). Association between substandard classroom ventilation rates and students’ academic achievement. Indoor Air, 21(2), 121–131. doi:10.1111/j.1600-0668.2010.00686.x.

    Article  Google Scholar 

  • Heudorf, U., Neitzert, V., & Spark, J. (2009). Particulate matter and carbon dioxide in classrooms—the impact of cleaning and ventilation. International Journal of Hygiene and Environmental Health, 212(1), 45–55. doi:10.1016/j.ijheh.2007.09.011.

    Article  Google Scholar 

  • ISO (2001). Ergonomics of the thermal environment—instruments for measuring physical quantities. In ISO 7726. Geneva: International Organization for Standardization.

    Google Scholar 

  • Jenkins, D. P., Peacock, A. D., & Banfill, P. F. G. (2009). Will future low-carbon schools in the UK have an overheating problem? Building and Environment, 44(3), 490–501. doi:10.1016/j.buildenv.2008.04.012.

    Article  Google Scholar 

  • Madureira, J., Alvim-Ferraz, M. C. M., Rodrigues, S., Gonçalves, C., Azevedo, M. C., Pinto, E., et al. (2009). Indoor air quality in schools and health symptoms among Portuguese teachers. Human and Ecological Risk Assessment: An International Journal, 15(1), 159–169. doi:10.1080/10807030802615881.

    Article  Google Scholar 

  • Max, H. S. (1986). Estimation of infiltration from leakage and climate indicators. Energy and Buildings, 10.

  • Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air, 15(1), 27–52. doi:10.1111/j.1600-0668.2004.00320.x.

    Article  Google Scholar 

  • Montazami, A., & Nicol, F. (2013). Overheating in schools: comparing existing and new guidelines. Building Research & Information, 41(3), 317–329. doi:10.1080/09613218.2013.770716.

    Article  Google Scholar 

  • Montazami, A., Wilson, M., & Nicol, F. (2012). Aircraft noise, overheating and poor air quality in classrooms in London primary schools. Building and Environment, 52(0), 129–141. doi:10.1016/j.buildenv.2011.11.019.

    Article  Google Scholar 

  • Mors, S. t., Hensen, J. L. M., Loomans, M. G. L. C., & Boerstra, A. C. (2011). Adaptive thermal comfort in primary school classrooms: creating and validating PMV-based comfort charts. Building and Environment, 46(12), 2454–2461. doi:10.1016/j.buildenv.2011.05.025.

    Article  Google Scholar 

  • Mumovic, D., Palmer, J., Davies, M., Orme, M., Ridley, I., Oreszczyn, T., et al. (2009). Winter indoor air quality, thermal comfort and acoustic performance of newly built secondary schools in England. Building and Environment, 44(7), 1466–1477. doi:10.1016/j.buildenv.2008.06.014.

    Article  Google Scholar 

  • Mydlarz, C. A., Conetta, R., Connolly, D., Cox, T. J., Dockrell, J. E., & Shield, B. M. (2013). Comparison of environmental and acoustic factors in occupied school classrooms for 11–16 year old students. Building and Environment, 60(0), 265–271. doi:10.1016/j.buildenv.2012.10.020.

    Article  Google Scholar 

  • Organization, W. H (2005). Effects of air pollution on children’s health and development: a review of the evidence, pp. 191. Denmark: Copenhagen.

    Google Scholar 

  • Ramalho, O., Mandin, C., Ribéron, J., & Wyart, G. (2013). Air stuffiness and air exchange rate in French schools and day-care centres. The International Journal of Ventilation, 12(2).

  • Santamouris, M., Synnefa, A., Asssimakopoulos, M., Livada, I., Pavlou, K., Papaglastra, M., et al. (2008). Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation. Energy and Buildings, 40(10), 1833–1843. doi:10.1016/j.enbuild.2008.04.002.

    Article  Google Scholar 

  • Satish, U., Mendell, M., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., et al. (2012). Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environmental Health Perspectives, (120), 1671–1677. doi:10.1289/ehp.1104789.

  • Shendell, D. G., Prill, R., Fisk, W. J., Apte, M. G., Blake, D., & Faulkner, D. (2004). Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air, 14(5), 333–341. doi:10.1111/j.1600-0668.2004.00251.x.

    Article  Google Scholar 

  • Sundell, J., Levin, H., Nazaroff, W. W., Cain, W. S., Fisk, W. J., Grimsrud, D. T., et al. (2011). Ventilation rates and health: multidisciplinary review of the scientific literature. Indoor Air, 21(3), 191–204. doi:10.1111/j.1600-0668.2010.00703.x.

    Article  Google Scholar 

  • Teli, D., Jentsch, M. F., James, P. A. B., & Bahaj, A. S. (2011) Overheating risk evaluation of school classrooms. In Proceedings, World Renewable Energy Congress 2011, Linköping, Sweden, 08 Apr–11 May 2011

  • Teli, D., Jentsch, M. F., & James, P. A. B. (2012). Naturally ventilated classrooms: an assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy and Buildings, 53(0), 166–182. doi:10.1016/j.enbuild.2012.06.022.

    Article  Google Scholar 

  • Teli, D., James, P. A. B., & Jentsch, M. F. (2013). Thermal comfort in naturally ventilated primary school classrooms. Building Research and Information, 41(3), 301–316.

    Article  Google Scholar 

  • Thunshelle, K., & Hauge, A. L. (2015). User evaluation of the indoor climate of the first passive house school in Norway. Energy Efficiency, 1–16.

  • Wargocki, P., & Wyon, D. P. (2007). The effects of moderately raised classroom temperatures and classroom ventilation rate on the performance of schoolwork by children (RP-1257). HVAC&R Research, 13(2), 193–220. doi:10.1080/10789669.2007.10390951.

    Article  Google Scholar 

  • Wargocki, P., & Wyon, D. P. (2013). Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment, 59(0), 581–589. doi:10.1016/j.buildenv.2012.10.007.

    Article  Google Scholar 

  • WHO European Centre for Environment and Health, B. O (2011). Methods for monitoring indoor air quality in schools. Copenhagen: WHO—World Health Organization.

    Google Scholar 

Download references

Author contributions

All authors contributed equally in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo M. S. F. Almeida.

Ethics declarations

Conflict of interest

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, R.M.S.F., Pinto, M., Pinho, P.G. et al. Natural ventilation and indoor air quality in educational buildings: experimental assessment and improvement strategies. Energy Efficiency 10, 839–854 (2017). https://doi.org/10.1007/s12053-016-9485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-016-9485-0

Keywords

Navigation