Skip to main content

Advertisement

Log in

Mo.nalis.a: a methodological approach to identify how to meet thermal industrial needs using already available geothermal resources

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Mo.nalis.a is a conceptual model aimed at identifying the most suitable local geothermal sources to match the nearest industrial thermal needs. The methodological approach proposed is based on investigating industrial thermal processes and then identifying suitable geothermal solution plants that match these thermal requirements. The model was tested in Apulia (southern Italy) as a case study for assessing how the methodology could contribute to reducing the use of conventional energy resources for the industrial heat supply sector. The medium thermal needs in Apulia are always higher than 60 °C, and the main strategic industrial processes discussed into this work are “pasta and flour production” “wastewater treatment/sludge digestion” and “swimming pool management”. In order to match these industrial thermal demands, the most suitable proposed plant is the ground water heat pump system, limited to the first 100 m, the depth involved in the heat exchange through vertical probes of model. Finally, Mo.nalis.a identifies the Apulian areas with a possible development of these three activities using geothermal resource: the Foggia province, Murge and Salento sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abate S., Aldighieri B., Ardizzone F., Barnaba F., Basso A., Botteghi S., Caielli G., Calvi E., Caputi A., Caputo M. C., Cardellicchio N., De Carlo L., Casarano D., Desiderio G., De Franco R., De Leo M., Donato A., Dragone V., Festa V., Giocoli A., Giornetti L., Inversi B., Limoni P., Liotta D., Lollino P., Lombardo G., Manzella A., Masciale R., Minissale M., Montanari D., Montegrossi G., Mussi M., Pagliarulo R., Palladino G., Parise M., Perrone A., Petrullo A., Piemonte C., Piscitelli S., Polemio M., Rizzo E., Romanazzi A., Romano G., Santaloia F., Scrocca D., Trizzino R., Wasowski J.E Zuffianò L.E. (2015). VIGOR: Sviluppo geotermico nella regione Puglia – Studi di Fattibilità a Bari e Santa Cesarea Terme. Progetto VIGOR—Valutazione del Potenziale Geotermico delle Regioni della Convergenza, POI Energie Rinnovabili e Risparmio Energetico 2007–2013, CNR-IGG.

  • Albanese C., Allansdottir A., Amato L., Ardizzone F., Bellani S., Bertini G., Botteghi S., Bruno D., Caielli G., Caiozzi F., Caputi A., Catalano R., Chiesa S., Contino A., D’Arpa S., De Alteriis G., De Franco R., Dello Buono D., Destro E., Di Sipio E., Donato A., Doveri M., Dragone V., Ellero A., Fedi M., Ferranti L., Florio G., Folino M., Galgaro A., Gennaro C., Gianelli G., Giaretta A., Gola G., Greco G., Iaquinta P., Inversi B., IORIO M., Iovine G., Izzi F., La Manna M., Livani M., Lombardo G., Lopez N., Magnelli D., Maio D., Manzella A., Marchesini I., Martini G., Masetti G., Mercadante A., Minissale A., Montanari D., Montegrossi G., Monteleone S., Muto F., Muttoni G., Norini G., Pellizzone A., Perotta P., Petracchini L., Pierini S., Polemio M., Rizzo E., Russo L., Sabatino M., Santaloia F., Santilano A., Scrocca S., Soleri S., Tansi C., Terranova O., Teza G., Tranchida G., Trumpy E., Uricchio V.E Valenti V. (2014). VIGOR: Sviluppo geotermico nelle Regioni della Convergenza. Progetto VIGOR—Valutazione del Potenziale Geotermico delle Regioni della Convergenza, POI Energie Rinnovabili e Risparmio Energetico 2007–2013, CNR–IGG.

  • Bakirci, K. (2010). Evaluation of the performance of a ground-source heat-pumpsystem with series GHE (ground heat exchanger) in the cold climate region. Energy, 35(7), 3088–3096.

    Article  Google Scholar 

  • Banks, D. (2012). An introduction to thermogeology: ground source heating and cooling (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Barzi, Y. M., & Assadi, M. (2015). Evaluation of a theramosyphon heat pipe operation and application in a waste heat recovery system. Experimental Heat Transfer: A Journal of Thermal Energy Generation, Transport, Storage, and Conversion. doi:10.1080/08916152.2014.913089.

    Google Scholar 

  • Bruno, D. E., Lombardo, G., Gola, G., Galgaro, A., Destro, E., Di Sipio, E., Uricchio, V. F., Manzella, A. (2013). A model proposal for evaluating thermal demand of industrial process to be supplied by low geothermal enthalpy. In: European Geothermal Congress (pp. 1–4). Pisa, Italy.

  • Bruno, D. E., D’Arpa, S., Uricchio, V. F., Antonicelli, A., Berlingerio, G. E., Chieco, M., Mercurio, A., De Giorgio, G., Piccinno, P. A., Cariglia, M. (2014). Progetto Legend—La filiera della geotermia a bassa entalpia in Apulia: dal caso pilota del progetto Legend in area naturale protetta alle linee di indirizzo per l’efficientamento energetico sostenibile degli edifici. Regione Apulia.

  • Calise, F., Dentice d’Accadia, M., Macaluso, A., Piacentino, A., & Vanoli, L. (2016). Exergetic and exergoeconomic analysis of a novel hybrid solar–geothermal polygeneration system producing energy and water. Energy Conversion and Management, 115, 200–220.

    Article  Google Scholar 

  • Calò, G. (1993). Accertamenti Idrogeologici relative al nuovo pozzo Terme ed al nuovo pozzo di monitoraggio. Comune di S.ta Cesarea Terme Lecce, (Rapporto Interno).

  • Carpentier, J.P. (1974). A review of energy models N.1 and 2, Laxenburg.

  • Cataldi, R., Monelli, F., Squarci, P., Taffi, L., Zito, G., & Calore, G. (1995). Geothermal ranking of the Italian territory. Geothermics, 2, 115–129.

    Article  Google Scholar 

  • Claps, P., Giordano, P., Laguardia, G. (2003). Analisi quantitativa della distribuzione spaziale delle temperature medie in Italia. Working Paper, 2003–02.

  • Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. A. (2010). Review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059–1082.

    Article  Google Scholar 

  • Cotecchia, V., & Magri, G. (1966). Idrogeologia del Gargano. Geol. Appl. e Idrogeol., 1, 1–80.

    Google Scholar 

  • Cotecchia, V., Tadolini, P., & Tulipano, L. (1983). Sea water intrusion in the planning of graoundwater resources protection and utilization in the Apulian region (Southern Italy). Geol. Appl. e Idrogeol., 18(2), 367–382.

    Google Scholar 

  • Cotecchia, V., D. Grassi, Polemio, M. (2005). Carbonate aquifers in Apulia and seawater intrusion. Giornale di Geologia Applicata.

  • Dincer, I., Hussain, M. M., & Al-Zaharnah, I. (2004). Energy and exergy use in public and private sector of Saudi Arabia. Energy Policy, 32, 1615–1624.

    Article  Google Scholar 

  • Donatini, F., & Salza, P. (2010). Impianti geotermici. Pisa: Università degli studi di Pisa.

    Google Scholar 

  • Donato, A., Santilano, A., Lombardo, G., Bruno, D. E. (2013). Quadro normativo ed iter autorizzativi per la ricerca e la coltivazione di risorse geotermiche. Progetto VIGOR “Valutazione del Potenziale geotermico nelle Regioni della Convergenza” (pp. 1–93), Pisa, Italy.

  • Dowd, A., Boughen, M., Ashworth, N., Carr, P., & Cornish, S. (2011). Geothermal technology in Australia: investigating social acceptance. Energy Policy, 39, 6301–6307.

    Article  Google Scholar 

  • EU Roadmap (2011). Mapping renewable energy pathways towards 2020, EREC.

  • Fleiter, T., Fehrenbach, D., Worrell, E., & Eichhammer, W. (2012). Energy efficiency in the German pulp and paper industry and a model-based assessment of saving potentials. Energy, 40, 84–99.

    Article  Google Scholar 

  • Galgaro, A., Di Sipio, E., Destro, E., Chiesa, S., Uricchio, V. F., Bruno, D. E., Masciale, R., Lopez, N., Iaquinta, P., Teza, G., Iovine, G., Montanari, D., Manzella, A., Soleri, S., Greco, R., Di Bella, G., Monteleone, S., Sabatino, M., Iorio, M., Petruccione, E., Giaretta, A., Tranchida, G., Trumpy, E., Gola, G., & D’Arpa, S. (2012). Methodological approach for evaluating the geo-exchange potential: VIGOR Project. Acque Sotterranee, Italian Journal of Groundwater, 1(3), 43–53.

    Article  Google Scholar 

  • Galgaro, A., Di Sipio, E., Teza, G., Destro, E., De Carli, M., Chiesa, S., Zarrella, A., Emmi, G., & Manzella, A. (2015). Empirical modeling of maps of geo-exchange potential for shallow geothermal energy at regional scale. Geothermics, 57, 173–184.

    Article  Google Scholar 

  • Gude, V. G. (2015). Energy storage for desalination processes powered by renewable energy and waste heat sources. Applied Energy, 137, 877–898.

    Article  Google Scholar 

  • Hammond, G. P. (2007). Industrial energy analysis, thermodynamics and sustainability. Applied Energy, 84, 675–700.

    Article  Google Scholar 

  • Hoogwijk, M.M. (2004). On the global and regional potential of renewable energy sources. PhD Thesis, Utrecht University.

  • Huang, J. P., Ang, B. W., & Poh, K. L. (1996). Synthesizing environmental externality costs—a statistical and multi-attribute analysis approach. Energy & Environment, 7, 253–266.

    Article  Google Scholar 

  • Izquierdo, S., Dopazo, C., & Fueyo, N. (2010). Supply-cost curves for geographically distributed renewable-energy resources. Energy Policy, 38, 667–672.

    Article  Google Scholar 

  • Kottick, D., Balu, M., & Edelstein, D. (1993). Battery energy storage for frequency regulation in an island power system. IEEE Trans. On Energy Conversion, 144(1), 1905–1913.

    Google Scholar 

  • Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., & Canizeras, C. (2004). Definition and classification of power system stability. IEEE Trans. On Power System, 19(2), 1384–1401.

    Google Scholar 

  • Maggiore, M., & Pagliarulo, P. (2004). Circolazione idrica ed equilibri idrogeologici negli acquiferi della Apulia. Geologi e Territorio, 1, 13–35.

    Google Scholar 

  • Massimiliano, M., Paola, C., & Gaia, C. (2011). Paradigm shift in urban energy systems through distributed generation: methods and models. Applied Energy, 88(4), 1032–1048.

    Article  Google Scholar 

  • Mongelli, F., & Ricchetti, G. (1970a). Heat flow along the Candelaro fault, Gargano headland (Italy). Geothermics, 2, 450–458.

    Article  Google Scholar 

  • Omer, A. M. (2008). Ground-source heat pumps systems and applications. Renewable and Sustainable Energy Reviews, 12(2), 344–371.

    Article  Google Scholar 

  • Polemio, M., Di Cagno, M., & Virga, R. (2000). Le acque sotterranee del Gargano: risorse idriche intergrative e di emergenza. Acque Sotterranee, 68, 35–41.

    Google Scholar 

  • Polemio, M., Limoni, P.P., Liotta, D., Palladino, G., Zuffianò, L.E., Santaloia, F. (2014) A peculiar case of coastal springs and geogenic saline Groundwater. In: 23nd Salt Water Intrusion Meeting, (p. 301–304). Husum, Germany.

  • Sametinger, K. (2009). How to invest in geothermal. Renew. Energy Focus, January/February, 84–87.

  • Self, S. J., Reddy, B. V., & Rosen, M. A. (2013). Geothermal heat pump systems: status review and comparison with other heating options. Applied Energy, 101, 341–348.

    Article  Google Scholar 

  • Tempesti, D., Manfrida, G., & Fiaschi, D. (2012). Thermodynamic analysis of two micro CHP systems operating with geothermal and solar energy. Applied Energy, 97, 609–617.

    Article  Google Scholar 

  • Van Gool, W. (1992). Exergy analysis of industrial processes. Energy, 17, 791–803.

    Article  MathSciNet  Google Scholar 

  • Verrone, A., & Bruno R. (2008), Sistemi per la climatizzazione mediante pompe di calore geotermiche e pali energetici. Tesi di laurea, Università di Bologna, Bologna, 2008/2009.

  • Younger, P. L. (2015). Geothermal energy: delivering on the global potential. Energies. doi:10.3390/en81011737.

    Google Scholar 

  • Zarlenga, F. (2011). Le possibilità di utilizzo della risorsa geotermica a bassa e media entalpia per la sostenibilità della produzione energetica. EAI, Energia, Ambiente, Innovazione, 3, 31–40.

    Google Scholar 

  • Zhou, P., Ang, B. W., & Poh, K. L. (2006). Decision analysis in energy and environmental modelling. An update. Energy, 31, 2604–2622.

    Google Scholar 

  • Zuffianò, L.E., Palladino, G., Santaloia, F., Polemio, M., Liotta, D., Limoni, P.P., Parise, M., Pepe, M., Casarano, D., Rizzo, E., Minissale, A., De Franco, R. (2013). Geothermal resource in a foreland environment: the Santa Cesarea Terme thermal springs (Southern Italy). In: European Geothermal Congress (pp. 101–104). Pisa, Italy.

Download references

Acknowledgments

The present study was performed within the framework of the VIGOR Project, aimed at assessing the geothermal potential and exploring geothermal resources of four regions in southern Italy. VIGOR is part of the activities of the Interregional Programme “Renewable Energies and Energy Savings FESR 2007-2013—Axes I Activity line 1.4 “Experimental Actions in Geothermal Energy.” The authors acknowledge the management of the VIGOR Project, and in particular Dr. Piezzo of Directorate General for Nuclear Energy, Renewable Energy and Energy Efficiency of the Ministry for Economic Development (MiSE-DGENRE) and Dr. Brugnoli, director of National Research Council of Italy, Department of Sciences of the Earth System and Environmental Technologies (CNR-DTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Evelina Bruno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, D.E., Lombardo, G., Di Sipio, E. et al. Mo.nalis.a: a methodological approach to identify how to meet thermal industrial needs using already available geothermal resources. Energy Efficiency 10, 639–655 (2017). https://doi.org/10.1007/s12053-016-9481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-016-9481-4

Keywords

Navigation