Skip to main content

Advertisement

Log in

A global survey of adverse energetic effects of increased wall insulation in office buildings: degree day and climate zone indicators

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

The energy efficiency of a building depends to a large measure on the characteristics of its envelope insulation. In the special case of internal gain dominated buildings, excessive building insulation may prevent the heat loss through the walls (anti-insulation effect), and thus generate the need for energy-intensive active systems to remove this thermal load. Detailed energetic simulations of a typical office building in Malaga (Spain), Dubai (UAE), and El Dorado (USA) show this anti-insulation effect and its dependency on climatic, constructive, and use factors. Results indicate that buildings in a predominantly cooling environment but within a certain range of heating degree days (HDD) will display this behavior: with very few to no HDD, the building’s energy consumption becomes insensitive to insulation increase (Dubai case); with a low number of HDDs the building becomes sensitive to anti-insulation (Malaga), and once a threshold is passed (El Dorado), the building’s energy consumption decreases with increased insulation. In order to further explore these limitations, simulations in 132 global locations of the building response to a step change in insulation are carried out. Results indicate that buildings in the Köppen climate zones Csa and Csb (Mediterranean climate), in locations with less than 2000 HDD and between 2000 and 5000 cooling degree days (CDD) are most susceptible to this anti-insulation behavior; however, quantitatively, the efficiency loss in these areas due to the insulation increase does not exceed 1 % of the overall energy consumption for the particular building studied and thus remains of limited importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Obtained with reference temperatures of 10 °C for CDD and 18 °C for HDD, as recommended by ASHRAE 90.1-2010 (SI)

References

  • Afshari, A., Nikolopoulou, C., & Martin, M. (2014). Life-cycle analysis of building retrofits at the urban scale-a case study in United Arab Emirates. Sustainability, 6(1), 483–503. doi:10.3390/su6010453.

    Article  Google Scholar 

  • Air conditioning heats up energy bills | The National (2011).

  • Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353–366. doi:10.1016/j.buildenv.2004.05.013.

    Article  Google Scholar 

  • Anh-Tuan, N., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043–1058. doi:10.1016/j.apenergy.2013.08.061.

    Article  Google Scholar 

  • ASHRAE-55 (2010). ANSI/ASHRAE Standard 55-2010, Thermal environmental conditions for human occupancy.

  • ASHRAE-90.1 (2010). ASHRAE 90.1-2010 (SI) - Standard 90.1-2010 (SI Edition) -- Energy standard for buildings except low-rise residential buildings.

  • Aste, N., Angelotti, A., & Buzzetti, M. (2009). The influence of the external walls thermal inertia on the energy performance of well insulated buildings. Energy and Buildings, 41(11), 1181–1187. doi:10.1016/j.enbuild.2009.06.005.

    Article  Google Scholar 

  • Boyano, A., Hernandez, P., & Wolf, O. (2013). Energy demands and potential savings in European office buildings: case studies based on EnergyPlus simulations. Energy and Buildings, 65(0), 19–28. doi:10.1016/j.enbuild.2013.05.039.

    Article  Google Scholar 

  • CIA (2013). Political map of the world, August 2013 - CIA. https://www.cia.gov/library/publications/the-world-factbook/graphics/ref_maps/political/pdf/world.pdf.

  • Crawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661–673. doi:10.1016/j.buildenv.2006.10.027.

    Article  Google Scholar 

  • Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., et al. (2001). EnergyPlus: creating a new-generation building energy simulation program. Energy and Buildings, 33(4), 319–331. doi:10.1016/S0378-7788(00)00114-6.

    Article  Google Scholar 

  • degreedays.net Degree days weather data for energy professionals. http://www.degreedays.net/.

  • Deru, M., & Torcellini, P. (2007). Source energy and emission factors for energy use in buildings. NREL.

  • Diakaki, C., Grigoroudis, E., Kabelis, N., Kolokotsa, D., Kalaitzakis, K., & Stavrakakis, G. (2010). A multi-objective decision model for the improvement of energy efficiency in buildings. Energy, 35(12), 5483–5496. doi:10.1016/j.energy.2010.05.012.

    Article  Google Scholar 

  • DOE U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Buildings, Building Energy Software Tools Directory, EnergyPlus. http://apps1.eere.energy.gov/buildings/tools_directory/software.cfm/ID=287/pagename_submenu=energy_simulation/pagename_menu=whole_building_analysis/pagename=subjects.

  • DOE (2008). DOE develops Benchmark models to improve building energy simulations.

  • Dominguez, S., Sendra, J. J., Leon, A. L., & Esquivias, P. M. (2012). Towards energy demand reduction in social housing buildings: envelope system optimization strategies. Energies, 5(7), 2263–2287. doi:10.3390/en5072263.

    Article  Google Scholar 

  • Dubai-Metereological-Office (2014). Climate statistics. https://services.dubaiairports.ae/dubaimet/MET/Climate.aspx.

  • EIA (2009). Residential Energy Consumption Survey (RECS) - Energy information administration. http://www.eia.gov/consumption/residential/index.cfm.

  • EIA (2011). International energy outlook 2011. http://www.eia.gov/forecasts/ieo/pdf/0484%282011%29.pdf.

  • Evins, R. (2013). A review of computational optimisation methods applied to sustainable building design. Renewable and Sustainable Energy Reviews, 22(0), 230–245. doi:10.1016/j.rser.2013.02.004.

    Article  Google Scholar 

  • Friess, W. A., Rakhshan, K., Hendawi, T. A., & Tajerzadeh, S. (2012). Wall insulation measures for residential villas in Dubai: a case study in energy efficiency. Energy and Buildings, 44(1), 26–32. doi:10.1016/j.enbuild.2011.10.005.

    Article  Google Scholar 

  • Fritsche, U. R., & Greß, H.-W. (2015). Development of the primary energy factor of electricity generation in the EU-28 from 2010-2013. Darmstadt: International Institute for Sustainability Analysis and Strategy.

    Google Scholar 

  • Fumo, N., Mago, P., & Luck, R. (2010). Methodology to estimate building energy consumption using EnergyPlus Benchmark Models. Energy and Buildings, 42(12), 2331–2337. doi:10.1016/j.enbuild.2010.07.027.

    Article  Google Scholar 

  • Ghoreishi, A. H., & Ali, M. M. (2013). Parametric study of thermal mass property of concrete buildings in US climate zones. Architectural Science Review, 56(2), 103–117. doi:10.1080/00038628.2012.729310.

    Article  Google Scholar 

  • Guan, L.-S. (2010). Will insulation always bring benefits in energy saving and thermal comfort? | QUT ePrints. Paper presented at the Proceedings of the First International Conference on Sustainable Urbanization ICSU 2010, The Hong Kong Polytechnic University.

  • Guglielmetti, R., Scheib, J., Pless, S. D., Torcellini, P. A., & Petro, R. (2011). Energy use intensity and its influence on the integrated daylighting design of a large net zero energy office building. In 2011 ASHRAE Winter Conference, January 29, 2011 - February 2, 2011, Las Vegas, NV, United states (PART 1 ed., Vol. 117, pp. 610-620, ASHRAE Transactions): Amer. Soc. Heating, Ref. Air-Conditoning Eng. Inc.

  • Henninger, R. H., Witte, M. J., & Crawley, D. B. (2004). Analytical and comparative testing of EnergyPlus using IEA HVAC BESTEST E100–E200 test suite. Energy and Buildings, 36(8), 855–863. doi:10.1016/j.enbuild.2004.01.025.

    Article  Google Scholar 

  • Kaynakli, O. (2011). Parametric investigation of optimum thermal insulation thickness for external walls. Energies, 4(6), 913–927. doi:10.3390/en4060913.

    Article  Google Scholar 

  • Ma, Z., & Wang, S. (2009). Building energy research in Hong Kong: a review. Renewable and Sustainable Energy Reviews, 13(8), 1870–1883. doi:10.1016/j.rser.2009.01.006.

    Article  Google Scholar 

  • Magnier, L., & Haghighat, F. (2010). Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Building and Environment, 45(3), 739–746. doi:10.1016/j.buildenv.2009.08.016.

    Article  Google Scholar 

  • Mahlia, T. M. I., & Iqbal, A. (2010). Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives. Energy, 35(5), 2242–2250. doi:10.1016/j.energy.2010.02.011.

    Article  Google Scholar 

  • Masoso, O. T., & Grobler, L. J. (2008). A new and innovative look at anti-insulation behaviour in building energy consumption. Energy and Buildings, 40, 1889–1894. Copyright 2008, The Institution of Engineering and Technology.

    Article  Google Scholar 

  • Meral, O. (2011). Thermal performance and optimum insulation thickness of building walls with different structure materials. Applied Thermal Engineering, 31(17-18), 3854–3863. doi:10.1016/j.applthermaleng.2011.07.033.

    Article  Google Scholar 

  • Moss, K. J. (2006). Energy management in buildings. Taylor & Francis.

  • Moss, K. J. (2007). Heat and mass transfer in buildings (2nd ed.). Taylor & Francis.

  • Pan, D., Chan, M., Deng, S., & Lin, Z. (2012). The effects of external wall insulation thickness on annual cooling and heating energy uses under different climates. Applied Energy, 97(0), 313–318. doi:10.1016/j.apenergy.2011.12.009.

    Article  Google Scholar 

  • Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394–398. doi:10.1016/j.enbuild.2007.03.007.

    Article  Google Scholar 

  • Radhi, H. (2009a). Can envelope codes reduce electricity and CO2 emissions in different types of buildings in the hot climate of Bahrain? Energy, 34(2), 205–215. doi:10.1016/j.energy.2008.12.006.

    Article  Google Scholar 

  • Radhi, H. (2009b). Evaluating the potential impact of global warming on the UAE residential buildings—a contribution to reduce the CO2 emissions. Building and Environment, 44(12), 2451–2462. doi:10.1016/j.buildenv.2009.04.006.

    Article  Google Scholar 

  • Rakhshan, K., Friess, W. A., & Tajerzadeh, S. (2013). Evaluating the sustainability impact of improved building insulation: a case study in the Dubai residential built environment. Building and Environment. doi:10.1016/j.buildenv.2013.05.010.

    Google Scholar 

  • Strahler, A. (2011). Introducing physical geography (5th ed.). John Wiley & Sons, Inc.

  • Tsikaloudaki, K., Laskos, K., & Bikas, D. (2012). On the establishment of climatic zones in Europe with regard to the energy performance of buildings. Energies, 5(1), 32–44. doi:10.3390/en5010032.

    Google Scholar 

  • Ucar, A., Inalli, M., & Balo, F. (2011). Application of three different methods for determination of optimum insulation thickness in external walls. Environmental Progress and Sustainable Energy, 30(4), 709–719. doi:10.1002/ep.10531.

    Article  Google Scholar 

  • Ueno, K., & Straube, J. (2010). Understanding primary/source and site energy. http://buildingscience.com/documents/digests/bsd151-understanding-primary-source-site-energy.

  • weatherspark.com Beautiful Weather Graphs and Maps. http://weatherspark.com/.

  • Yu, J., Tian, L., Xu, X., & Wang, J. (2015). Evaluation on energy and thermal performance for office building envelope in different climate zones of China. Energy and Buildings, 86(0), 626–639. doi:10.1016/j.enbuild.2014.10.057.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank RIT Dubai for the support of this research, DesignBuilder for providing the simulation software, and the contributors to the RIT Dubai Residential Energy Assessment Center for the participation in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm A. Friess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friess, W.A., Rakhshan, K. & Davis, M.P. A global survey of adverse energetic effects of increased wall insulation in office buildings: degree day and climate zone indicators. Energy Efficiency 10, 97–116 (2017). https://doi.org/10.1007/s12053-016-9441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-016-9441-z

Keywords

Navigation