Energy Efficiency

, Volume 9, Issue 5, pp 1065–1085 | Cite as

Heating requirements in greenhouse farming in southern Italy: evaluation of ground-source heat pump utilization compared to traditional heating systems

  • Stefania D’ArpaEmail author
  • Gianpiero Colangelo
  • Giuseppe Starace
  • Irene Petrosillo
  • Delia Evelina Bruno
  • Vito Uricchio
  • Giovanni Zurlini
Original Article


Greenhouse farming, where energy consumptions are mainly related to the greenhouses heating, is one of the sectors consuming the most energy in the agricultural industry. High costs and the uncertain availability of fossil fuels constrain the use of heating applications. Among possible solutions, the utilization of renewable heating systems such as geothermal energy through ground-source heat pump systems (GSHPs) at competitive prices has to be taken in consideration. The competitiveness of these systems depends mainly on the characteristics of the end-users, i.e., the annual heating loads. Few studies focusing on the potential of using these systems start with an analysis of the thermal requirements and end with a cost evaluation in tune with local assets, geo-climatic conditions, and landscape protection. This paper analyzes the greenhouse crop industry in the Apulia region in southern Italy, as a potential end-user of GSHP systems. Data collected from an area mainly devoted to greenhouse crop production have been used to (a) describe greenhouse farms, (b) define the heating requirements of a greenhouse model representative of the most used typology in the investigated area, and (c) examine the economic viability of greenhouse heating with GSHP systems. Both vertical and horizontal ground heat exchanger (GHE) configurations are compared with conventional fossil-fuel heating systems. In all scenarios considered, the observed payback periods appear reasonable and worthy of consideration. The results suggest that these technologies can fully satisfy the winter heating requirements in a cost-effective way and they can support the planning of measures aimed to improve the sector competitiveness.


Protected agriculture Greenhouse farming Heating requirements Ground-source heat pump systems (GSHPs) Economic convenience 



Total area of the cover [m2]


Greenhouse floor area [m2]


Air density [kg/m3]


Air specific heat capacity [kJ/kg °C]


Solar radiation on the horizontal surface [W/m2]


Estimated number of air change per hour [1/h]


Total heat power to ensure the desired inside temperature of the greenhouse [W]


Heat loss from the greenhouse [W]


Solar radiation inside the greenhouse [W]


Heat loss through the cover material [W]


Heat loss for infiltration [W]


Inside greenhouse temperature [°C]


Outside greenhouse temperature [°C]


Greenhouse volume [m3]


Transmissivity of the greenhouse cover


Overall heat transmission coefficient in the greenhouse [W/m2 °C]



We thank ASSOCODIPUGLIA and, in particular, its provincial department CODILE staff for their support in the organization of the farm and for the questionnaire administration.


  1. Abdel-Ghany, A. M., & Kozai, T. (2006). On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: analysis of radiation and convection heat transfer. Energy Conversion and Management, 47(15–16), 2612–2628. doi: 10.1016/j.enconman.2005.10.024.CrossRefGoogle Scholar
  2. Adaro, J. A., Galimberti, P. D., Lema, A. I., Fasulo, A., & Barral, J. R. (1999). Geothermal contribution to greenhouse heating. Applied Energy, 64(1–4), 241–249. doi: 10.1016/S0306-2619(99)00049-5.CrossRefGoogle Scholar
  3. AEEG (2014). Autorità per l’energia elettrica, il gas ed il sistema idrico (AEGG). Web site of the Italian electricity authority. URL: [Accessed on 25 May 2014].
  4. Al-Helal, I. M., & Alhamdan, A. M. (2009). Effect of arid environment on radiative properties of greenhouse polyethylene cover. Solar Energy, 83(6), 790–798. doi: 10.1016/j.solener.2008.11.008.CrossRefGoogle Scholar
  5. Aramyan, L. H., Lansink, A. G. J. M. O., & Verstegen, J. A. A. M. (2007). Factors underlying the investment decision in energy-saving systems in Dutch horticulture. Agricultural Systems, 94(2), 520–527. doi: 10.1016/j.agsy.2007.01.005.CrossRefGoogle Scholar
  6. ARIAP (2013). Listino dei prezzi delle opere edili. Associazione regionale ingegneri ed architetti di Puglia (ARIAP). URL:
  7. ASHRAE (1999). ASHRAE handbook, HVAC application. American Society of Heating Refrigeration and Air-Conditioning Engineers (ASHRAE).Google Scholar
  8. Assocodipuglia (2013). Associazione Consorzi di Difesa Regione Puglia (ASSOCODIPUGLIA). URL: [Last accessed 16 May 2014].
  9. Aye, L., Fuller, R. J. J., & Canal, A. (2010). Evaluation of a heat pump system for greenhouse heating. International Journal of Thermal Sciences, 49(1), 202–208. doi: 10.1016/j.ijthermalsci.2009.07.002.CrossRefGoogle Scholar
  10. Bailey, B. J. (1989). Principles of environmental control. In C. von Zabeltitz (Ed.), Energy conservation and renewable energies for greenhouse heating. REUR Technical Series 3 (pp. 17–41). Roma: FAO, ENEA.Google Scholar
  11. Balbay, A., & Esen, M. (2010). Experimental investigation of using ground source heat pump system for snow melting on pavements and bridge decks. Scientific Research and Essays, 5(24), 3955–3966.Google Scholar
  12. Balbay, A., & Esen, M. (2013). Temperature distributions in pavement and bridge slabs heated by using vertical ground-source heat pump systems. Acta Scientiarum Technology, 35, 677–685. doi: 10.4025/actascitechnol.v35i4.15712.Google Scholar
  13. Benli, H. (2011). Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Conversion and Management, 52(1), 581–589. doi: 10.1016/j.enconman.2010.07.033.CrossRefGoogle Scholar
  14. Benli, H. (2013). A performance comparison between a horizontal source and a vertical source heat pump systems for a greenhouse heating in the mild climate Elaziğ, Turkey. Applied Thermal Engineering, 50(1), 197–206. doi: 10.1016/j.applthermaleng.2012.06.005.MathSciNetCrossRefGoogle Scholar
  15. Benli, H., & Durmuş, A. (2009). Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy and Buildings, 41(2), 220–228. doi: 10.1016/j.enbuild.2008.09.004.CrossRefGoogle Scholar
  16. Bentounes, N., Jaffrin, A., Dalichamp, B., & Urban, L. (1999). Depollution of landfill biogas for greenhouse applications. Acta Horticulturae, 534, 117–124.Google Scholar
  17. Berroug, F., Lakhal, E. K., Omari, M., Faraji, M., & Qarnia, H. (2011). Numerical study of greenhouse nocturnal heat losses. Journal of Thermal Science, 20(4), 377–384. doi: 10.1007/s11630-011-0484-3.CrossRefGoogle Scholar
  18. Blum, P., Campillo, G., Münch, W., & Kölbel, T. (2010). CO2 savings of ground source heat pump systems—a regional analysis. Renewable Energy, 35(1), 122–127. doi: 10.1016/j.renene.2009.03.034.CrossRefGoogle Scholar
  19. Buonasorte, G., Rizzi, F., & Passaleva, G. (2010). Direct uses of geothermal energy in Italy 2005-2009 : update report and perspectives. In Proceedings of the 2010 World Geothermal Congress (Vol. 2006, pp. 25–29). Bali Indonesia.Google Scholar
  20. Campiotti, C. A. (2001). Geothermal energy as sustainable application for greenhouse heating in rural areas and agriculture. In IGA - International Summer School (pp. 139–145).Google Scholar
  21. Campiotti, C. A., Bibbiani, C., Dondi, F., Scoccianti, M., & Viola, C. (2011a). Energy efficiency and photovoltaic solar for greenhouse agriculture. Journal of Sustainable Energy, 2, 51–56.Google Scholar
  22. Campiotti, C. A., Dondi, F., Di Carlo, F., Scoccianti, M., Alonzo, G., Bibbiani, C., & Incrocci, L. (2011b). Preliminary results of a PV closed greenhouse system for high irradiation zone in south Italy. Acta Horticulturae, 893, 243–250.CrossRefGoogle Scholar
  23. Campiotti, C. A., Viola, C., Scoccianti, M., Giagnacovo, G., & Lucerti, G. (2011a). Le Filiere del Sistema Agricolo per l’Energia e l’Efficienza Energetica. Roma.
  24. Campiotti, C. A., Viola, C., Alonzo, G., Bibbiani, C., Giagnacovo, G., Scoccianti, M., & Tumminelli, G. (2012). Sustainable greenhouse horticolture in europe. Journal of Sustainable Energy, 3(3), 159–163.Google Scholar
  25. Canakci, M., & Akinci, I. (2006). Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8–9), 1243–1256. doi: 10.1016/ Scholar
  26. Canakci, M., Yasemin Emekli, N., Bilgin, S., Caglayan, N., & Emekli, N. Y. (2013). Heating requirement and its costs in greenhouse structures: a case study for Mediterranean region of Turkey. Renewable and Sustainable Energy Reviews, 24, 483–490. doi: 10.1016/j.rser.2013.03.026.CrossRefGoogle Scholar
  27. Carella, R., & Sommaruga, C. (2000). Geothermal space and agribusiness heating in italty (pp. 117–122). Kyushu Tohoku: Proceedings of the 2000 World Geothermal Congress.Google Scholar
  28. Cellura, M., Ardente, F., & Longo, S. (2012). From the LCA of food products to the environmental assessment of protected crops districts: a case-study in the south of Italy. Journal of Environmental Management, 93, 194–208.CrossRefGoogle Scholar
  29. Chai, L., Ma, C., & Ni, J.-Q. (2012). Performance evaluation of ground source heat pump system for greenhouse heating in northern China. Biosystems Engineering, 111(1), 107–117. doi: 10.1016/j.biosystemseng.2011.11.002.CrossRefGoogle Scholar
  30. Chau, J., Sowlati, T., Sokhansanj, S., Preto, F., Melin, S., & Bi, X. (2009). Techno-economic analysis of wood biomass boilers for the greenhouse industry. Applied Energy, 86(3), 364–371. doi: 10.1016/j.apenergy.2008.05.010.CrossRefGoogle Scholar
  31. Chiabrando, R., & Fabrizio, E. (2009). La sostenibilità energetica delle costruzioni: criteri progettuali e strumenti di verifica (pp. 12–16). Ischia Porto: Proceedings of the IX Convegno Nazionale dell’Associazione Italiana di Ingeneria Agraria.Google Scholar
  32. Chou, S. K., Chua, K. J., Ho, J. C., & Ooi, C. L. (2004). On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Applied Energy, 77(4), 355–373. doi: 10.1016/S0306-2619(03)00157-0.CrossRefGoogle Scholar
  33. Colangelo, G., Romano, D., De Risi, A., Starace, G., & Laforgia, D. (2012). Un tool in Matlab-Simulink per la simulazione di pompe di calore geotermiche Tecnica. La Termotecnica, 3(1), 63.72.Google Scholar
  34. Congedo, P. M., Colangelo, G., & Starace, G. (2012). CFD simulations of horizontal ground heat exchangers: a comparison among different configurations. Applied Thermal Engineering, 33–34, 24–32. doi: 10.1016/j.applthermaleng.2011.09.005.CrossRefGoogle Scholar
  35. Criddle, R. S., Smith, B. N., & Hansen, L. D. (1997). A respiration based description of plant growth rate responses to temperature. Planta, 201(4), 441–445. doi: 10.1007/s004250050087.CrossRefGoogle Scholar
  36. Elsner, B. Von, Briassoulis, D., Waaijenberg, D., Mistriotis, A, Zabeltitz, C. Von, & Gratraud, J. (2000). Review of structural and functional characteristics of greenhouses in European Union countries: Part I, Design Requirements, 1–16.Google Scholar
  37. Esen, M., & Yuksel, T. (2013). Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy and Buildings, 65, 340–351. doi: 10.1016/j.enbuild.2013.06.018.CrossRefGoogle Scholar
  38. Esen, H., Inalli, M., & Esen, M. (2006). Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey. Energy Conversion and Management, 47, 1281–1297. doi: 10.1016/j.enconman.2005.06.024.CrossRefGoogle Scholar
  39. Esen, H., Inalli, M., & Esen, M. (2007a). A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling. Building and Environment, 42, 1955–1965. doi: 10.1016/j.buildenv.2006.04.007.CrossRefGoogle Scholar
  40. Esen, H., Inalli, M., Esen, M., & Pihtili, K. (2007b). Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers. Building and Environment, 42(10), 3606–3615. doi: 10.1016/j.buildenv.2006.10.014.CrossRefGoogle Scholar
  41. European Commission (EC), Directorate-General Agriculture and Rural Development (2006). SCENAR 2020, Scenario study on agriculture and the rural world. URL: [accessed 25 March 2014].
  42. European Commission (EC), Directorate-General for Agriculture and Rural Development (2011). Agriculture in the EU Statistical and Economic Information. URL: [accessed 25 March 2014].
  43. Fabrizio, E. (2012). Energy reduction measures in agricultural greenhouses heating: envelope, systems and solar energy collection. Energy and Buildings, 53, 57–63. doi: 10.1016/j.enbuild.2012.07.003.CrossRefGoogle Scholar
  44. Faehnrich, I., Meyer, J., & von Zabeltitz, C. (1989). Infuence of condensation on light transmission and heat transfer through greenhouse covering materials. Plasticulture, 84(4), 13–18.Google Scholar
  45. Florides, G., & Kalogirou, S. (2007). Ground heat exchangers—a review of systems, models and applications. Renewable Energy, 32(15), 2461–2478. doi: 10.1016/j.renene.2006.12.014.CrossRefGoogle Scholar
  46. Ghosal, M. K., & Tiwari, G. N. (2004). Mathematical modeling for greenhouse heating by using thermal curtain and geothermal energy. Solar Energy, 76, 603–613. doi: 10.1016/j.solener.2003.12.004.CrossRefGoogle Scholar
  47. Hamer, P. J. C., Bailey, B. J., Virk, G. S., & Ford, M. G. (2006). Novel methods of heating and cooling greenhouses: a feasibility study. In B. J. Bailey (Ed.), Acta Horticulturae (Vol. 719, pp. 223–230).
  48. Hanova, J., & Dowlatabadi, H. (2007). Strategic GHG reduction through the use of ground source heat pump technology. Environmental Research Letters, 2(4), 8 pp. doi: 10.1088/1748-9326/2/4/044001.
  49. Hansen, L. D., Afzal, M., Breidenbach, R. W., & Criddle, R. S. (1994). High- and low-temperature limits to growth of tomato cells. Planta, 195(1), 1–9. doi: 10.1007/BF00206284.CrossRefGoogle Scholar
  50. Hedau, N. K., Tuti, M. D., Stanley, J., Mina, B. L., Agrawal, P. K., Bisht, J. K., & Bhatt, J. C. (2013). Energy-use efficiency and economic analysis of vegetable cropping sequences under greenhouse condition. Energy Efficiency, 7(3), 507–515. doi: 10.1007/s12053-013-9239-1.CrossRefGoogle Scholar
  51. Heidari, M. D., & Omid, M. (2011). Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy, 36(1), 220–225. doi: 10.1016/ Scholar
  52. Hepbasli, A. (2011). A comparative investigation of various greenhouse heating options using exergy analysis method. Applied Energy, 88(12), 4411–4423. doi: 10.1016/j.apenergy.2011.05.022.CrossRefGoogle Scholar
  53. Impron, I., Hemming, S., & Bot, G. P. A. (2007). Simple greenhouse climate model as a design tool for greenhouses in tropical lowland. Biosystems Engineering, 98(1), 79–89. doi: 10.1016/j.biosystemseng.2007.03.028.CrossRefGoogle Scholar
  54. Istituto Nazionale di Statistica, ISTAT (2010). 6° Censimento generale dell’agricoltura 2010 (6th Agricultural Census) (Rome), URL: [accessed 16 January 2014].
  55. Jaffrin, A., & Morisot, A. (1994). Role of structure, dirt and conden- sation on the light transmission of greenhouse covers. Plasticulture, 94(1), 33–44.Google Scholar
  56. Jaffrin, A., Bentounes, N., Joan, A., & Makhlouf, S. (2003). Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosystems Engineering, 86(1), 113–123. doi: 10.1016/S1537-5110(03)00110-7.CrossRefGoogle Scholar
  57. Jolliet, O., Danloy, L., Gay, J.-B., Munday, G. L., & Reist, A. (1991). HORTICERN: an improved static model for predicting the energy consumption of a greenhouse. Agricultural and Forest Meteorology, 55(3–4), 265–294. doi: 10.1016/0168-1923(91)90066-Y.CrossRefGoogle Scholar
  58. Kondili, E., & Kaldellis, J. K. (2006). Optimal design of geothermal–solar greenhouses for the minimisation of fossil fuel consumption. Applied Thermal Engineering, 26(8–9), 905–915. doi: 10.1016/j.applthermaleng.2005.09.015.CrossRefGoogle Scholar
  59. Körner, O., Bakker, M., & Heuvelink, E. (2004). Daily temperature integration: a simulation study to quantify energy consumption. Biosystems Engineering, 87(3), 333–343. doi: 10.1016/j.biosystemseng.2003.11.003.CrossRefGoogle Scholar
  60. Lee, J.-Y. (2009). Current status of ground source heat pumps in Korea. Renewable and Sustainable Energy Reviews, 13(6–7), 1560–1568. doi: 10.1016/j.rser.2008.10.005.CrossRefGoogle Scholar
  61. Lo Russo, S., Boffa, C., & Civita, M. V. (2009). Low-enthalpy geothermal energy: an opportunity to meet increasing energy needs and reduce CO2 and atmospheric pollutant emissions in Piemonte, Italy. Geothermics, 38(2), 254–262. doi: 10.1016/j.geothermics.2008.07.005.CrossRefGoogle Scholar
  62. Lund, J. W., & Falls, K. (2012). Direct heat utilization of geothermal energy. In Comprehensive Renewable Energy (Vol. 7, pp. 171–188). Elsevier Ltd. doi: 10.1016/B978-0-08-087872-0.00707-1.
  63. Marzi, V., & Scarascia Mugnozza, G. (2014). La grande serra d’ Europa - Candela, il modello Ciccolella da esportare. (M. A. Editore, Ed.).Google Scholar
  64. Mesmoudi, K., Soudani, A., Zitouni, B., Bournet, P. E., & Serir, L. (2010). Experimental study of the energy balance of unheated greenhouse under hot and arid climates: study for the night period of winter season. Journal of the Association of Arab Universities for Basic and Applied Sciences, 9(1), 27–37. doi: 10.1016/j.jaubas.2010.12.007.CrossRefGoogle Scholar
  65. Nayak, S., & Tiwari, G. N. (2008). Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy and Buildings, 40(11), 2015–2021. doi: 10.1016/j.enbuild.2008.05.007.CrossRefGoogle Scholar
  66. Nayak, S., & Tiwari, G. N. (2009). Theoretical performance assessment of an integrated photovoltaic and earth air heat exchanger greenhouse using energy and exergy analysis methods. Energy and Buildings, 41(8), 888–896. doi: 10.1016/j.enbuild.2009.03.012.CrossRefGoogle Scholar
  67. NGMA (2000). Standards for heat loss in greenhouse structures. National Greenhouse Manufactures Association (NGMA) URL: [accessed 16 January 2014].
  68. Nijskens, J., Deltour, J., Coutisse, S., & Nisen, A. (1985). Radiation transfer through covering materials, solar and thermal screens of greenhouses. Agricultural and Forest Meteorology, 35(1–4), 229–242. doi: 10.1016/0168-1923(85)90086-3.CrossRefGoogle Scholar
  69. Osservatorio di Chimica, Fisica e Geologia Ambientali, OCFGA (2002). Unpublished data.Google Scholar
  70. Ozgener, O., & Hepbasli, A. (2005a). Experimental performance analysis of a solar assisted ground-source heat pump greenhouse heating system. Energy and Buildings, 37(1), 101–110. doi: 10.1016/j.enbuild.2004.06.003.CrossRefGoogle Scholar
  71. Ozgener, O., & Hepbasli, A. (2005b). Performance analysis of a solar-assisted ground-source heat pump system for greenhouse heating: an experimental study. Building and Environment, 40(8), 1040–1050. doi: 10.1016/j.buildenv.2004.08.030.CrossRefGoogle Scholar
  72. Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1), 39–51. doi: 10.1016/S0960-1481(03)00135-6.CrossRefGoogle Scholar
  73. Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Solar greenhouse an option for renewable and sustainable farming. Renewable and Sustainable Energy Reviews, 15(8), 3934–3945. doi: 10.1016/j.rser.2011.07.030.CrossRefGoogle Scholar
  74. Pardossi, A., & Tognoni, F. (1999). Greenhouse industry in Italy. Acta Horticulturae, 481, 769–770.CrossRefGoogle Scholar
  75. Pieters, J. G., & Deltour, J. M. (1999). Modelling solar energy input in greenhouses. Solar Energy, 67(1–3), 119–130.CrossRefGoogle Scholar
  76. Popovski, K., & Popovska Vasilevska, S. (2003). Prospects and problems for geothermal use in agriculture in Europe. Geothermics, 32(4–6), 545–555. doi: 10.1016/j.geothermics.2003.07.009.CrossRefGoogle Scholar
  77. Popovski, P. K., & Vasilevska, S. P. (2008). Geothermal application in europe—overview in agriculture. In IGA - International Summer School (pp. 1–10).Google Scholar
  78. Rafferty, K. (1986). Some considerations for the heating of greenhouses with geothermal energy. Geothermics, 15(2), 227–244.CrossRefGoogle Scholar
  79. Rivington, M., Matthews, K. B., Buchan, K., Miller, D. G., Bellocchi, G., & Russell, G. (2013). Climate change impacts and adaptation scope for agriculture indicated by agro-meteorological metrics. Agricultural Systems, 114, 15–31. doi: 10.1016/j.agsy.2012.08.003.CrossRefGoogle Scholar
  80. Russi, D. (2008). An integrated assessment of a large-scale biodiesel production in Italy: killing several birds with one stone? Energy Policy, 36(3), 1169–1180. doi: 10.1016/j.enpol.2007.11.016.CrossRefGoogle Scholar
  81. Russo, G., Anifantis, A. S., Verdiani, G., & Mugnozza, G. S. (2014). Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Biosystems Engineering, 127, 11–23. doi: 10.1016/j.biosystemseng.2014.08.002.CrossRefGoogle Scholar
  82. Schneider, U., & Smith, P. (2008). Energy intensities and greenhouse gas emission mitigation in global agriculture. Energy Efficiency, 2(2), 195–206. doi: 10.1007/s12053-008-9035-5.CrossRefGoogle Scholar
  83. Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162–171. doi: 10.1016/j.scienta.2010.09.016.CrossRefGoogle Scholar
  84. Seginer, I. (1989). Optimal greenhouse production under economic constraints. Agricultural Systems, 29(1), 67–80. doi: 10.1016/0308-521X(89)90071-1.CrossRefGoogle Scholar
  85. Servizio Protezione Civile - Centro Funzionale Regionale e Struttura di Monitoraggio Meteoclimatico, Regione Puglia (2011). Mappe climatiche in Puglia: metodologie, strumenti e risultati 2011. URL:
  86. Sethi, V. P., Sumathy, K., Lee, C., & Pal, D. S. (2013). Thermal modeling aspects of solar greenhouse microclimate control: a review on heating technologies. Solar Energy, 96, 56–82. doi: 10.1016/j.solener.2013.06.034
  87. Starace, G., Congedo, P., & Colangelo, G. (2005). Horizontal heat exchangers for GSHP. Efficiency and cost investigation for three different applications (pp. 1–8). Trondheim: 18th International Conference on Efficiency, Cost, Optimization, Simulation and Environment - ECOS 2005.Google Scholar
  88. Starace, G., Congedo, P. M., & Colangelo, G. (2006). Computational sensitivity analysis of horizontal heat exchangers for GSHPs. In ASME-ATI Conference—Energy: Production, Distribution and Conservation (pp. 467–476). Milan, Italy, May14/17th 2006.Google Scholar
  89. Stolfi, N., & Triolo, L. (1988). Un migliore uso della energia nelle serre manuale per serricoltori. (F. Angeli, Ed.) (ENEA Milan.).Google Scholar
  90. Tong, Y., Kozai, T., Nishioka, N., & Ohyama, K. (2010). Greenhouse heating using heat pumps with a high coefficient of performance (COP). Biosystems Engineering, 106(4), 405–411. doi: 10.1016/j.biosystemseng.2010.05.003.CrossRefGoogle Scholar
  91. Vieri, M., & Ceccatelli, M. (2003). Uso razionale delle risorse nel florovivaismo: i fabbisogni energetici. Agenzia Regionale per lo Sviluppo e l’Innovazione nel settore Agricolo-forestale (ARSIA). Quaderno 2/2003.Google Scholar
  92. Von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., et al. (2000). Review of structural and functional characteristics of greenhouses in European Union countries: part I, design requirements. Journal of Agricultural Engineering Research, 75(1), 1–16. doi: 10.1006/jaer.1999.0502.CrossRefGoogle Scholar
  93. Von Zabeltitz, C. (2011). Integrated greenhouse systems for mild winter climates: climatic conditions, design, construction, maintenance and climate control. Berlin: Springer-Verlag, Ed.CrossRefGoogle Scholar
  94. Waaijenberg, D. (2006). Design, construction and maintenance of greenhouse structures. Acta Horticulturae, 710, 31–42.CrossRefGoogle Scholar
  95. Wu, R. (2009). Energy efficiency technologies—air source heat pump vs ground source heat pump. Journal of Sustainable Development, 2, 14–23.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Stefania D’Arpa
    • 1
    Email author
  • Gianpiero Colangelo
    • 2
  • Giuseppe Starace
    • 2
  • Irene Petrosillo
    • 3
  • Delia Evelina Bruno
    • 1
  • Vito Uricchio
    • 1
  • Giovanni Zurlini
    • 3
  1. 1.CNR-IRSA, National Research CouncilWater Research InstituteBariItaly
  2. 2.Department of Innovation EngineeringUniversity of SalentoLecceItaly
  3. 3.Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly

Personalised recommendations