Advertisement

Energy Efficiency

, Volume 9, Issue 5, pp 965–980 | Cite as

User evaluation of the indoor climate of the first passive house school in Norway

  • Kari ThunshelleEmail author
  • Åshild Lappegard Hauge
Original Article

Abstract

The indoor climate of the first passive house school in Norway was evaluated with the aid of a questionnaire (Örebro) with approximately 340 respondents, and three interview rounds with a total of 23 informants. The intention was to reveal whether the users experienced any problems or possibly better conditions than in a regular school building. The interviews showed that, overall, the users were satisfied with the building. The survey showed generally good results for the indoor climate. Questionnaire results were compared with reference material consisting of data for average school buildings. The indoor climate of Marienlyst School was better than the average for most of the symptoms of indoor air quality problems, for both pupils and teachers. The users did still experience some problems with the building, relating to the fine-tuning of the automatic systems: temperature control, solar control, static electricity, and pressure conditions in the building. The users also said they lacked information about the passive house concept, the building, and how to obtain optimal functionality of the automatic control systems. The reasons for the fine-tuning problems are discussed in relation to the passive house concept, and the problem indicators are probably not attributable to the concept.

Keywords

Passive house School Indoor climate Case study Questionnaire 

References

  1. Agha-Hossein, M. M., El-Jouzi, S., Elmualim, A. A., Ellis, J., & Williams, M. (2013). Post-occupancy studies of an office environment: energy performance and occupants’ satisfaction. Building and Environment, 69(2), 121–130. doi: 10.1016/j.buildenv.2013.08.003.CrossRefGoogle Scholar
  2. Andersson, K. (1993). The MM-questionaires—a tool when solving indoor climate problems. Sweden: Örebro Medical Center Hospital.Google Scholar
  3. Andersson, K., & Stridh, G. (1992). Strategi för bättre luft i skolan - enkäter, inspektion och mätningar. Ur Skolan - en arbetsmiljö för alla?. In Skolan – en arbetsmiljö för alla? (Vol. H192, pp. 43–60). Solna: Arbetarskyddsstyrelsen.Google Scholar
  4. Andersson, K., Bodin, L., Fagerlund, I., & W., A. (2002). The perceived physical and psychosocial climate in Swedish schools from 1989 to 2000 – a database analysis. Paper presented at the Proceedings Indoor Air 2002, Monterey USA.Google Scholar
  5. Andersson, K., Fagerlund, I., & W., A. (2008). The perceived indoor climate in Swedish schools. Paper presented at the Indoor air, 17–22 August 2008, Copenhagen, DenmarkGoogle Scholar
  6. Arnstad, E., Askjer, T. O., Helle, T., Strandskog, T., Steinsvik, O. K., Helland, M., et al. (2010). Energi effektivisering av bygg, en realistisk og ambisiøs plan fram mot 2040. Oslo: KRDs arbeidsgruppe for energieffektivisering av bygg.Google Scholar
  7. Berndgen-Kaiser, A., Fox-Kämper, R., Holtmann, S., & Frey, T. (2010). Leben im Passivhaus. Baukonstruktion, Baukosten, Energieverbrauch, Bewohnererfahrungen. ILS-Forschung. Dortmund: ILS – Institut für Landes- und Stadtentwicklungsforschung.Google Scholar
  8. Buckley, M. (2010). Soft landings for schools : case studies : feedback from use of the soft landings framework in new schools (BSRIA BG, Vol. 9/2010): BSRIA.Google Scholar
  9. Confirmit (2012). Analyseverktøy for meningsmålinger. www.confirmit.com. IT firma og program. Verktøy for innhenting av feedback.
  10. Dehli, M., & Bouse, D. (2004). Moderne energieeffiziente Lüftungsanlagen für gesundes Wohnen. Stuttgart: Landesgewerbeamt Baden-Würtemberg.Google Scholar
  11. Dokka, T. H., Andersen, G. (2012). Marienlyst School - Comparison of simulated and measured energy use in a passive house school. Paper presented at the Nordic Passive House Conference 21–23. October 2012 - From low energy buildings towards pluss energy developments, Trondheim Norway.Google Scholar
  12. Hauge, Å. L., Thomsen, J., & Berker, T. (2011). User evaluations of energy efficient buildings: literature review and further research. Advances in Building Energy Research, 5(1), 109–127. doi: 10.1080/17512549.2011.582350.CrossRefGoogle Scholar
  13. Jerkø, S., & Mysen, M. (2006). Skolemiljø for læring - veileder for skoleeiere: om inneklima og helhetlig fysisk miljø = School environment for education – guide for building owners. About indoor air and overall physical environment (In Norwegian). Project reportu (Vol. 404, pp. 102). Oslo: Norwegian Building Research Institute.Google Scholar
  14. Klinski, M., Thomsen, J., Hauge, Å. L., Jerkø, S., & Dokka, T. H. (2012). Systematisering av erfaringer med passivhus (Prosjektrapport, Vol. 90). Oslo: SINTEF Byggforsk.Google Scholar
  15. Leaman, A., & Bordass, B. (2007). Are users more tolerant of ‘green’ buildings? Building Research & Information, 35(6), 662–673. doi: 10.1080/09613210701529518.CrossRefGoogle Scholar
  16. Maripuu, M.-L. (2009). Demand controlled ventilation (DCV) systems in commercial buildings : functional requirements on systems and components. Göteborg: Chalmers University of Technology.Google Scholar
  17. Mlecnik, E., Schütze, T., Jansen, S. J. T., de Vries, G., Visscher, H. J., & van Hal, A. (2012). End-user experiences in nearly zero-energy houses. Energy and Buildings, 49, 471–478. doi: 10.1016/j.enbuild.2012.02.045.CrossRefGoogle Scholar
  18. Mysen, M., Schild, P. G., & Drangsholt, F. (2010). Robustness and true performance of demand controlled ventilation in educational buildings – review and needs for future development. Paper presented at the Proceedings 31st AIVC conference, Low Energy and Sustainable Ventilation Technologies for Green Buildings, Seoul.Google Scholar
  19. Norges Astma- og Allergiforbund, & Utdanningsforbundet (2009). Inneklima i skoler og barnehager – en kartlegging av ansattes vurdering av inneklima på arbeidsplassen. Oslo: NAAF : Utdanningsforbundet.Google Scholar
  20. Örebro University Hospital Sweden (2014a). The Örebro model, MM 040 NA basic questionnaire and manual. http://www.regionorebrolan.se/sv/uso/Patientinformation/Kliniker-och-enheter/Arbets--och-miljomedicinska-kliniken/Bestallningsmaterial/MM-Enkater/MM-enkaterna/.
  21. Örebro University Hospital Sweden (2014b). The Örebro model, MM 040 sp1 : schools – to the employees, questionnaire and manual. http://www.regionorebrolan.se/sv/uso/Patientinformation/Kliniker-och-enheter/Arbets--och-miljomedicinska-kliniken/Bestallningsmaterial/MM-Enkater/MM-enkaterna/.
  22. Örebro University Hospital Sweden (2014c). The Örebro model, MM 060 sp11, schools – to the pupils. Questionnaire and manual. http://www.regionorebrolan.se/sv/uso/Patientinformation/Kliniker-och-enheter/Arbets--och-miljomedicinska-kliniken/Bestallningsmaterial/MM-Enkater/MM-enkaterna/
  23. Örebro University Hospital Sweden (2014d). The Örebro model, MM 080 sp11B, schools years 0–6 – to the parents. Questionnaire and manual. http://www.regionorebrolan.se/sv/uso/Patientinformation/Kliniker-och-enheter/Arbets--och-miljomedicinska-kliniken/Bestallningsmaterial/MM-Enkater/MM-enkaterna/
  24. Passipedia. www.passipedia.de.
  25. Passive House Institute in Germany, official web site. www.passivehouse.com.
  26. Peper, S., Feist, W., & Kah, O. (2001). Messtechnische Untersuchung und Auswertung Klimaneutrale Passivhaussiedlung Hannover-Kronsberg. CEPHEUS-Projektinformation. Hannover: Stadtwerke Hannover: 135.Google Scholar
  27. Schnieders, J., & Hermelink, A. (2006). CEPHEUS results: measurements and occupants’ satisfaction provide evidence for Passive Houses being an option for sustainable building. Energy Policy, 34(2), 151–171. doi: 10.1016/j.enpol.2004.08.049.CrossRefGoogle Scholar
  28. Sjøberg, J. (2011). Varsler om helserisiko med passivhus = Health risk in passive houses http://www.aftenposten.no/bolig/Varsler-om-helserisiko-med-passivhus-5107606.html. Accessed 18.05.2014.
  29. Standards Norway NS 3424:1995: condition survey of construction works - Contents and execution. Oslo.Google Scholar
  30. Standards Norway NS 3700:2010: criteria for passive houses and low energy houses. Residential buildings.Google Scholar
  31. Standards Norway NS 3701:2012: criteria for passive houses and low energy houses. Non-residential buildings. Oslo.Google Scholar
  32. Universitetssjukhuset Örebro Arbets- och miljömedicinska kliniken Sverige (2014). Örebroodellen. www.orebroll.se/amm.
  33. Thomsen, J., & Berge, M. (2012). Inneklima i energieffektive boliger - en litteraturstudie. (Vol. SBF 2012, pp. 46 s.). Trondheim: SINTEF Byggforsk.Google Scholar
  34. Thomsen, J., Berker, T., Hauge, Å.L., Denizou, K., Wågø, S.I., & Jerkø, S. (2013). The interaction between building and users in passive and zero-energy housing and offices: the role of interfaces, knowledge and user commitment. Smart and Sustainable Built Environment, 2(1), 43–59.Google Scholar
  35. Thunshelle, K. (2012). Utfordringer med innregulering av VAV anlegg I Passivhus = Challenges with adjustment of VAV-installation in Passive houses (In Norwegian). Paper presented at the 5th Nordic Passive House Conference 21–23 Oct 2012, Trondheim, Norway.Google Scholar
  36. Thunshelle, K., & Hauge, Å. L. (2012). Brukerundersøkelse om innemiljø på Marienlyst skole = Evaluation of indoor environment quality at Marienlyst School (In Norwegian). ZEB project report. Oslo: SINTEF Academic Press.Google Scholar
  37. Way, M., Bordass, W., Building Services Research and Information Association, & Usable Buildings Trust and BSRIA (2009). The soft landings framework, for better briefing, design, handover and building performance in use (BSRIA BG, Vol. 4/2009). Bracknell: BSRIA.Google Scholar
  38. Zalejska-Jonsson, A. (2012). Evaluation of low-energy and conventional residential buildings from occupants’ perspective. Building and Environment, 58(0), 135–144. doi: 10.1016/j.buildenv.2012.07.002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.SINTEF Building and InfrastructureOsloNorway

Personalised recommendations