Skip to main content

Advertisement

Log in

The energy impact of infiltration: a study on buildings located in north central Spain

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Improving the energy efficiency of the thermal conditioning of buildings is an international priority. Along this line, there have been major advances in the insulation of enclosures and the equipping of facilities. The need for building ventilation has an enormous impact on the environmental energy consumption evaluation. Filtration resulting from imperfections in enclosures and partitions always accompanies narrow ventilation flow, increasing the unabated consumption of energy. The present research study establishes an evaluation procedure for this excess energy consumption via an experimental study carried out in various buildings located in the north and central part of Spain. The procedure, commonly called the Blower Door Test, is based on standards EN 13829 and ISO 9972. The work is composed of the following sections: a description of the air entry processes in buildings, an experimental study and calculation of the airtightness of enclosures, a discussion of the energetic effects of infiltration and conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Air Tightness Testing and Measurement Association ATTMA. (2007). Measuring air permeability of building envelopes. Technical standard 1. Northampton: The British Institute of Non-Destructive Testing (BINDT).

    Google Scholar 

  • Axley, J. (2001). Residential passive ventilation systems: evaluation and design. Coventry: Air Infiltration and Ventilation Centre AIVC.

    Google Scholar 

  • Bichof, W., Bolender, T., Fingerling, A., Heinz, E., et al. (2012). Gebäude-Luftdichtheit – Band 1. Berlin: FliB e.V. (Fachverband Luftdichtheit im Bauwesen e.V.).

    Google Scholar 

  • Blasnik, M., & Fitzgerald, J. (1992). Pressure diagnostics: diagnosing complex air leakage paths. Technical guide. Montreal: Concordia University.

    Google Scholar 

  • Bossaer, A., Demeester, J., Wouters, P., Vandermarke, B., Vangroenweghe, W. (1998). Airtightness performance in new Belgian dwellings. In: Proceedings of AIVC 19th conference “Ventilation technologies in urban areas”. Oslo: AIVC.

  • Brunsell, J. T., Uvslokk, S. (1980). Boligers lufttetthet: resultater fra lufttetthetsmaalinger av nyere norske boliger. Norges Byggforskningsinstitutt Report 31.

  • Carrié, F. R., & Rosenthal, B. (2008). An overview of national trends in envelope and ductwork airtightness, Ventilation Information Paper 29. Coventry: Air Infiltration and Ventilation Centre (AIVC).

    Google Scholar 

  • CEN. (2000). Thermal performance of buildings. Determination of air permeability of buildings. Fan pressurization method. EN Standard 13829. Brussels: European Committee for Standardization.

    Google Scholar 

  • Código Técnico de la Edificación. (2009). Documento Básico HS3 Calidad del aire interior. Madrid: Ministerio de Fomento.

    Google Scholar 

  • Código Técnico de la Edificación. (2013). Documento Básico HE1 Limitación de demanda energética. Madrid: Ministerio de Fomento.

    Google Scholar 

  • Comisión Europea (2008). Eficiencia energética: alcanzar el objetivo del 20%. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0772:FIN:ES:PDF. Bruselas: Comunicación de la Comisión.

  • D’Ambrosio, F. R., Dell’Isola, M., Ficco, F., & Tassini, F. (2012). Experimental analysis of air tightness in Mediterranean buildings using the fan pressurization method. Building and Environment, 53, 16–25.

    Article  Google Scholar 

  • Ministerio de Fomento (2014) Programa LIDER. http://www.codigotecnico.org/web/recursos/aplicaciones/.

  • de Gids, W. F. (1981). Influence of different parameters on infiltration and infiltration heat loss. Paper 8. Stockholm: AIC 2nd Conference Building design for minimum air infiltration.

    Google Scholar 

  • DePani, S. (1999). A study on single blower door methods for multifamily buildings in Montreal. Thesis for the Degree of Master of Applied Science. Montreal: Concordia University.

    Google Scholar 

  • Eskola, L. (2013). Air tightness of historic houses. In: HELTH Project. http://helthproject.eu/wp-content/uploads/2013/05/Session-2_1-Lari-Eskola-14.5.2013.pdf.

  • Etheridge, D., & Sandberg, M. (1996). Building ventilation. Theory and measurement. Baffins Lane: Wiley.

    Google Scholar 

  • Europe’s Buildings under the Microscope (2011). A country-by-country review of the energy performance of buildings. BPIE (Buildings Performance Institute Europe. ISBN: 9789491143014.

  • Eurostat. Final energy consumption, by sector, corresponding to 2011. http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&language=en&pcode=tsdpc320&plugin=1.

  • Finch G., Straube J., Genge. C. (2009). Air leakage within multi-unit residential buildings: testing and implications for building performance. In: Proceedings of 12th Canadian Conference on Building Science and Technology. Montreal: National Building Envelope Council of Canada.

  • Gantioler, G. (2006). Building air tightness and dwelling ventilation—experiences in Italy. In: Proceedings of the 1st Blower Door European Symposium. Fulda.

  • Granum, H., Haugen, T. (1986). Ventilation and indoor air quality in new Norwegian dwellings. In: Proceedings of AIC seventh conference 44 houses “occupant interaction with ventilation systems”. Stratford-upon-Avon: AIC.

  • Hakan Tanribilir, A., Oskay, R., & Yener, C. (1990). Air leakage measurements in dwellings in Turkey. In M. H. Sherman (Ed.), Air change rate and airtightness. Chelsea: American Society for Testing and Materials.

    Google Scholar 

  • IGN Instituto Geográfico Nacional. (2008). Atlas Nacional de España. 1986-2008. Madrid: Centro Nacional de Información Geográfica.

    Google Scholar 

  • Instituto para la Diversificación y Ahorro de la Energía IDAE. (2010). Condiciones climáticas exteriores de proyecto. Guía Técnica. Madrid: IDAE.

    Google Scholar 

  • Instituto para la Diversificación y Ahorro de la Energía IDAE (2011). Proyecto Sech-Spahousec. Informe Final. Madrid: Secretaría General. Departamento de Planificación y Estudios.

  • ISO. (2006). Thermal performance of buildings. Determination of air permeability of buildings. Fan pressurization method. ISO Standard 9972. Geneva: International Organization for Standardization.

    Google Scholar 

  • Jõgioja, E., Jõgioja M. (2000). Air tightness of detached houses. In: Proceedings of the Baltic symposium on indoor air quality and building physics. Tallinn: Healthy Buildings 2000.

  • Jokisalu, J., Kurnitski, J. (2002). Simulation of energy consumption in typical Finnish detached house. Report B74. Helsinki University of Technology: HVAClaboratory.

  • Kalamees, T. (2007). Air tightness and air leakages of new lightweight single-family detached houses in Estonia. Building and Environment, 42, 2369–2377.

    Article  Google Scholar 

  • Kauppinen, T. (2001). Air tightness of buildings in Finland. In: Proceedings of SPIE Thermosense XXIII. Orlando: SPIE.

  • Korpi, M., Vinha, J., Kurnitski, J. (2004). Air tightness of timber-frame houses with different structural solutions. In: Proceedings of IX international Conference on Performance of Exterior Envelopes of Whole Buildings. Florida: Oak Ridge National Laboratory ORNL.

  • Kurnitski, J., Eskola, J., Palonen, J., Seppänen, O. (2005). Ventilation in 102 Finnish single-family houses. In: Proceedings of the eighth REHVA world congress clima. Lausanne: REHVA.

  • Limb, M. (2001). A review of international ventilation, airtightness, thermal insulation and indoor air quality criteria. Technical note 55. Coventry: Air Infiltration and Ventilation Centre (AIVC).

    Google Scholar 

  • Love, J. A. (1986). Airtightness testing methods for multi-unit housing. Canada Mortgage and Housing Corporation.

  • Marchant, E. W. (2000). Fire safety systems. Interaction and integration. Facilities, 18, 444–455.

    Article  Google Scholar 

  • Meiss, A., & Feijó-Muñoz, J. (2013). La necesidad de estudiar las infiltraciones: estudio de caso en viviendas sociales de la urbanización Zabalgana (Vitoria). Boletín Académico, 3, 57–64.

    Google Scholar 

  • Modera, M. P., Diamond, R. C., Brunsell, J. T. (1986). Improving diagnostics and energy analysis for multifamily buildings: a case study. LBNL Report LBL-20247. Lawrence Berkeley Laboratory: University of California.

  • Nylund P. (1981). Tightness and its testing in single and terraced housing. In: Proceedings of the First Air Infiltration Centre Conference. Winsord: Air Infiltration Instrumentation and Measuring techniques p. 159-172.

  • Orme, M., Liddament, M., & Wilson, A. (1994). An analysis and data summary of the AIVC’s Numerical Database. Technical Note 44. Coventry: Air Infiltration and Ventilation Centre.

    Google Scholar 

  • Papaglastra, M., Leivada, I., Sfakianaki, K., Rémi-Carrié, F., Santamouris M. International comparison of envelope airtightness measurements. In: 3. Europäisches BlowerDoor-Symposium “Dichte Gebäudehülle, Thermografie, Wohnungslüftung, Schimmel”. Kassel: Energie- und Umweltzentrum.

  • Pinto, M., Viegas, J., & de Freitas, V. P. (2011). Air permeability measurements of dwellings and buildings components in Portugal. Building and Environment, 46, 2480–2489.

    Article  Google Scholar 

  • Polvinen, M., Kauppi, A., Saarimaa, J., Haalahti, P., Laurikainen, M. (1983). Rakennusten ulkovaipan ilmanpitävyys. Technical Research Centre of Finland, VTT. Research Reports 215. Helsinki.

  • Proskiw G. (2007). An innovative airtightness test procedure for separating envelope air leakage from interior partition air leakage in multi-zone buildings. Thesis for the Degree of Master of Applied Science. Montreal: Concordia University.

  • Reiher, H., Fraass, K., Settele, E. Über die Frage der Luft- und Wärmedurchlässigkeit von Fenstern verschiedener Konstruktion. 1. Teilbericht, Wärmewirtschaftlich Nachrichten 1932-33; 6:42-59.

  • Roberson, J. A. (2004). Effect of building airtightness and fan size on the performance of mechanical ventilation systems in new U.S. houses: a critique of ASHRAE Standard 62.2-2003. Berkeley: University of California.

    Google Scholar 

  • Sandberg, P. I., Sikander, E., Wahlgren, P., Larsson, B. (2007). Lufttäthetsfrågorna i byggprocessen. Etrapp B. Tekniska konsekvenser och lönsamhetskalkyler, SP Rapport 2007:23 Borås: Sveriges Tekniska Forskningsinstitut.

  • Sfakianaki, A., Pavlou, K., Santamouris, M., Livada, I., Assimakopoulos, M. N., Mantas, P., et al. (2008). Air tightness measurements of residential houses in Athens, Greece. Building and Environment, 43, 398–405.

    Article  Google Scholar 

  • Sheltair Scientific Ltd (1987). Methods for airtightness testing of multi-unit R2000 housing. R2000 Program Administration and the Canadian Home Builders Association.

  • Sherman, M. H. (1987). Estimation of infiltration from leakage and climate indicators. Energy and Buildings, 10, 81–86.

    Article  Google Scholar 

  • Sherman, M. H., & Chan, W. R. (2006). Building air tightness: research and practice. In M. Santamouris & P. Wouters (Eds.), Building ventilation: the state of the art (pp. 137–162). London: AIVC – Earthscan.

    Google Scholar 

  • Sikander, E., et al. (2007). Lufttäthetens Handbok: Problem och möjligheter. Sveriges Byggindustrier: Göteborg.

    Google Scholar 

  • Sordo Barreda, A. (2013). Estudio de infiltraciones en edificios residenciales de Castilla y León. Master’s degree in E.T.S. Arquitectura. Tutor: Phd. A. Meiss. Valladolid: Universidad de Valladolid.

    Google Scholar 

  • The New River Center for Energy Research and Training (NRCERT). (2012). Multifamily blower door process, technical guide. Christiansburg: Community Housing Partners.

    Google Scholar 

  • Unión Europea. La eficiencia energética en el horizonte de 2020. http://europa.eu/legislation_summaries/energy/energy_efficiency/en0002_es.htm.

  • Walther, W., & Rosenthal, B. (2009). P165 airtightness testing of large and multi-family buildings in an energy performance regulation context. European project ASIEPI—Assessment and Improvement of the EPBD Impact. Holzkirchen: Fraunhofer Institute of Building Physic.

    Google Scholar 

  • WFF/Adena. Retos y oportunidades de financiación para la rehabilitación energética de viviendas en España. Madrid: Informe 2012. awsassets.wwf.es/downloads/financiacion_rehab_edif.pdf.

Download references

Acknowledgments

The authors are thankful for the collaboration with VISESA (VIVIENDA Y SUELO DE EUSKADI, SOCIEDAD ANONIMA. EUSKADIKO ETXEBIZITZA ETA LURRA, E.A. [Basque Housing and Land, Inc.]), whose main objective is to promote the quality of social housing in Basque Country and permitted testing in its developments in Basauri, Sondika and Vitoria. In addition, all of the owners of the other dwellings are thanked for their collaboration in the performance of the remainder of the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Meiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meiss, A., Feijó-Muñoz, J. The energy impact of infiltration: a study on buildings located in north central Spain. Energy Efficiency 8, 51–64 (2015). https://doi.org/10.1007/s12053-014-9270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-014-9270-x

Keywords

Navigation