Skip to main content

Advertisement

Log in

Energy-efficient control strategy for variable speed-driven parallel pumping systems

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

The article aims to find a solution for the energy efficiency improvements in variable speed-controlled parallel pumping systems with lesser initial data and without additional flow metering and start-up measurements. This paper introduces a new control strategy for variable speed-controlled parallel pumps based on flow rate estimation and pump operation analysis utilizing variable speed drives. The energy-saving potential of the new control strategy is studied with simulations and laboratory measurements. The energy consumption of the parallel pumps using the new control strategy is compared with the traditional rotational speed control strategy of parallel pumps. The benefit of the new control strategy is the opportunity to operate variable speed-controlled parallel pumps in a region which suggests improved energy efficiency and lower risk of mechanical failure of the controlled pumps compared with traditional control. The article concludes by discussing the implications of the findings for different applications and varying system conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahonen, T. (2011). Monitoring of centrifugal pump operation by a frequency converter. PhD Thesis. Lappeenranta University of Technology, Finland.

  • Ahonen, T., et al. (2010). Estimation of pump operational state with model-based methods. Energy Conversion and Management, 51(6), 1319–1325.

    Article  Google Scholar 

  • Ahonen, T., Ahola, J., Viholainen, J., & Tolvanen, J. (2011). Energy-efficiency-based recommendable operating region of a VSD centrifugal pump. In: International Conference on Energy Efficiency in Motor Driven Systems (EEMODS). Alexandria, Virginia, US.

  • Ahonen, T., Tamminen, J., Ahola, J., & Kestilä, J. (2012). Frequency-converter-based hybrid estimation method for the centrifugal pump operational state. IEEE Transactions on Industrial Electronics, 59(12), 4803–4809.

    Article  Google Scholar 

  • ANSI/HI (1997). 9.6.3: Centrifugal and vertical pumps for allowable operating region.

  • Aranto, N., Ahonen, T., & Viholainen, J. (2009). Energy Audits: University Approach with ABB. In: International Conference on Energy Efficiency in Motor Driven Systems (EEMODS). Nantes.

  • Barringer, P. (2003). A life cycle cost summary. In: International Conference of Maintenance Societies (ICOMS). Perth, Australia.

  • Bernier, M. and Bourret, B. (1999). Pumping Energy and Variable Frequency Drives. ASHRAE Journal, 37, 37–40.

    Google Scholar 

  • Binder, A. (2008). Potentials for energy saving with modern drive technology—a survey. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Ischia, Italy.

  • Bortoni, E. A., Almeida, R. A., & Viana, A. N. C. (2008). Optimization of parallel variable-speed-driven centrifugal pumps operation. Energy Efficiency, 1, 167–173.

    Article  Google Scholar 

  • Carlson, R. (2000). The correct method of calculating energy savings to justify adjustable-frequency drives on pumps. IEEE Transactions on Industry Applications, 36(6), 275–283. ISSN: 0093–9994.

    Article  Google Scholar 

  • de Almeida, A., Fonseca, P., Falkner, H., & Bertoldi, P. (2003). Market transformation of energy-efficient motor technologies in the EU. Energy Policy, 31(6), 563–575.

    Article  Google Scholar 

  • de Almeida, A. T., Ferreira, F. J. T. E., & Both, D. (2005). Technical and economical considerations to improve the penetration of variable speed drives for electric motor systems. IEEE Transactions on Industry Applications, 41(1), 188–199.

    Article  Google Scholar 

  • Europump and Hydraulic Institute. (2004). Variable speed pumping: A guide to successful applications (1st ed.). Oxford: Elsevier. ISBN 1-85617-449-2.

    Google Scholar 

  • Ferreira, F. J. T. E., Fong, C., & de Almeida, T. (2011). Eco-analysis of variable-speed drives for flow regulation in pumping systems. IEEE Transactions on Industrial Electronics, 58(6), 2117–2125. ISSN 0278–0046.

    Article  Google Scholar 

  • Hammo, S., & Viholainen, J. (2006). Providing flow measurement in parallel pumping systems from variable speed drives. World Pumps, 2006(483).

  • Hammond, P. W. (1984). A universal controller for parallel pumps with variable-frequency drives. IEEE Transactions on Industry Applications, IA-20(1), 203–208. ISSN: 0093–9994.

    Article  MathSciNet  Google Scholar 

  • Hooper, W. (1999). Advantages of parallel pumping. Plant Engineering, 31, 4–6.

    Google Scholar 

  • Hovstadius, G., Tutterow, V., & Bossel, S. (2005). Getting it right, applying a systems approach to variable speed pumping. In: Energy Efficiency in Motor Driven Systems (EEMODS), pp. 304–314. Heidelberg, Germany

  • Izquierdo, M.D.Z., Jimenez, J.J.S., and del Sol, A.M. (2008). Matlab software to determine the saving in parallel pumps optimal operation systems, by using variable speed. In: IEEE Energy 2030 Conference, 2008. ENERGY 2008. Atlanta, GA, USA.

  • Jones, G. M. (2006). Pumping station design. Amsterdam: Elsevier. ISBN 978-0-7506-7544-4.

    Google Scholar 

  • Karassik, I. J., & McGuire, T. (1998). Centrifugal pumps (2nd ed.). New York: Chapman & Hall.

    Google Scholar 

  • Karassik, I., Messina, J., Cooper, P., & Heald, C. (2001). Centrifugal pump handbook (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Kaya, D., et al. (2008). Energy efficiency in pumps. Energy Conversion and Management, 2008(49), 1662–1673.

    Article  Google Scholar 

  • Kini, P.G., Bansal, R.C., & Aithal, R.S. (2008). Performance analysis of centrifugal pumps subjected to voltage variation and unbalance. IEEE Transactions on Industrial Electronics, 55(2), 562–569.

    Google Scholar 

  • Martins, G. and Lima, E. (2010). Improving reliability in a high static head system through VFD application. In: International Pump Users Symposium. Houston.

  • Pannatier, Y., et al. (2010). Investigation of control strategies for variable-speed pump-turbine units by using a simplified model of the converters. IEEE Transactions on Industrial Electronics, 57(9), 3039–3049. ISSN: 0278–0046.

    Article  Google Scholar 

  • Pemberton, M. (2003). Intelligent variable speed pumping. Plant Engineering, 57(12), 28–30.

    Google Scholar 

  • Pemberton, M., & Bachmann, J. (2010). Pump systems performance impacts multiple bottom lines. Engineering & Mining Journal, 211(3), 56–59.

    Google Scholar 

  • Rossmann, W. C., & Ellis, R. G. (1998). Retrofit of 22 pipeline pumping stations with 3000-hp motors and variable-frequency drives. IEEE Transactions on Industry Applications, 34(1), 178–186. ISSN: 0093–9994.

    Article  Google Scholar 

  • Shiels, S. (1997). The risk of parallel operation. World Pumps, 1997(364).

  • Sulzer. (1989). Centrifugal pump handbook. New York: Elsevier. ISBN 1-85166-442-4.

    Google Scholar 

  • Viholainen, J., et al. (2009a). Energy efficiency in variable speed drive (VSD) controlled parallel pumping. In: International Conference on Energy Efficiency in Motor Driven Systems (EEMODS). Nantes.

  • Viholainen, J., Tolvanen, J., & Vakkilainen, E. (2009). VSD—control in simulated systems. World Pumps, 2009(512).

  • Volk, M. (2005). Pump characteristics and applications. Boca Raton: Taylor & Francis Group. ISBN 0-8247-2755-x.

    Book  Google Scholar 

  • White, F. M. (2003). Fluid mechanics. New York: McGraw-Hill. ISBN 0-07-119911-x.

    Google Scholar 

  • Yang, Z., & Borsting, H. (2010). Energy efficient control of a boosting system with multiple variable-speed pumps in parallel. In: 49th IEEE Conference on Decision and Control (CDC), 2010. Atlanta, GA, USA.

  • Zhang, H., Xia, X., & Zhang, J. (2012). Optimal sizing and operation of pumping systems to achieve energy efficiency and load shifting. Electric Power Systems Research, 86, 41–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Viholainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viholainen, J., Tamminen, J., Ahonen, T. et al. Energy-efficient control strategy for variable speed-driven parallel pumping systems. Energy Efficiency 6, 495–509 (2013). https://doi.org/10.1007/s12053-012-9188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-012-9188-0

Keywords

Navigation