Skip to main content

Advertisement

Log in

Energy efficiency measures and conversion of fossil fuel boiler systems in a detached house

  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

There is a large potential to reduce primary energy use and CO2 emissions from the Swedish building stock. Here detached houses heated by oil, natural gas or electric boilers were assessed. CO2 emissions, primary energy use and heating costs were evaluated before and after implementing house envelope measures, conversions to more efficient heating systems and changes to biomass fuel use. The study included full energy chains, from natural resources to usable heat in the houses. The aim was to evaluate the societal economic cost effectiveness of reducing CO2 emission and primary energy use by different combinations of changes. The results demonstrated that for a house using an electric boiler, a conversion to a heat pump combined with house envelope measures could be cost efficient from a societal economic perspective. If the electricity was based on biomass, the primary energy use was at the same time reduced by 70% and the CO2 emission by 97%. Large emission reductions were also seen for conversions from oil and gas boilers to a biomass-based system. However, for these conversions the heating cost increased, leading to a mitigation cost of around €50/tonne C avoided. The price of oil and natural gas greatly influenced the competitiveness of the alternatives. House envelope measures were more cost-effective for houses with electric boilers as the cost of energy for this system is high. The results are specific to a Swedish context, but also give an indication of the potential in other regions, such as northern European and large parts of North America, which have both a cold climate and a widespread use of domestic boilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bärring, M., et al. (2003). El från nya anläggningar 2003. Jämförelse mellan olika tekniker för elgenerering med avseende på kostnader och utvecklingstendenser. (Electricity from new facilities 2003. Comparison of different technologies for power generation with respect to cost and technology development trends). Report 03:14. Stockholm: Elforsk AB. in Swedish.

  • Byggforskningsrådet. (1987). Energi i byggd miljö. 90-talets möjligheter (Energy in the built environment. The opportunities of the 1990s). Report G16:1987. Stockholm: Swedish Council for Building Research. (in Swedish).

    Google Scholar 

  • Carbon Trust. (2007). Micro CHP-Accelerator. Interim Report CTC727. London.

  • CEC. (2005). Åtgärder för ökad energieffektivisering I bebyggelsen (Measures to improve energy efficiency of buildings). Gothenberg, Sweden: Report to The National Board of Housing, Building and Planning, Chalmers EnergiCentrum. in Swedish.

    Google Scholar 

  • EIA. (2005). RECS public use microdata files. [online], Energy Information Administration. Available from: http://www.eia.doe.gov/emeu/states/_seds.html.

  • Energiförsörjningen i Sverige. (2005). (The electricity supply in Sweden). Report ER 2005:20. Eskilstuna: Swedish Energy Agency. (in Swedish).

    Google Scholar 

  • ENSYST, Vers. 1.2. (2003). Karlsson Å. Lund: Lund University.

  • EQUA. (2001). Enorm Vers. 1000. EQUA Simulation AB, Stockholm.

  • e-on. Naturgasnät (Natural gas grid). [online], 2007. Available from: http://www.eon.se/templates/InformationPage.aspx?id=12022 [accessed December 18, 2007] (in Swedish).

  • Erlandsson, M., Levin, P., & Myhre, L. (1997). Energy and environmental consequences of an additional wall insulation of a dwelling. Building and environment, 32(2), 129–136.

    Article  Google Scholar 

  • EURIMA. (2007). U-values for better energy performance of buildings. Cologne: Ecofys.

    Google Scholar 

  • European Commission. (2002). Sixth framework programme for research sixth framework programme for research. Report L232. Research Directorate-General.

  • Gustafsson, S.-I. & Karlsson, B. (1997). Lönsamma energisparåtgärder i 60-talets flerbostadshus. (Profitable energy conservation measures in apartment buildings from the 1960s). Report LiTH-IKP-R-727. Linköping: Linköping Institute of Technology. in Swedish.

    Google Scholar 

  • Gustavsson, L. (1997). Energy efficiency and competitiveness of biomass-based energy systems. Energy, 22(10), 959–967.

    Article  Google Scholar 

  • Gustavsson, L. & Börjesson, P. (1998). CO2 mitigation cost—Bioenergy systems and natural gas systems with decarbonization. Energy Policy, 26(9), 699–713.

    Article  Google Scholar 

  • Gustavsson, L. & Joelsson, A. (2007). Energy conservation and conversion of electric heating systems in detached houses. Energy and Buildings, 39(6), 716–726.

    Article  Google Scholar 

  • Gustavsson, L. & Karlsson, Å. (2002). A system perspective on the heating of detached houses. Energy Policy, 30, 553–574.

    Article  Google Scholar 

  • Gustavsson, L. & Karlsson, Å. (2006). CO2 mitigation: On methods and parameters for comparison of fossil-fuel and biofuel systems. Mitigation and Adaptation Strategies for Global Change, 11, 935–959.

    Article  Google Scholar 

  • Gustavsson, L., Johansson, B., & Bülow-Hübe, H. (1992). An environmentally benign energy future for Western Scania, Sweden. Energy, 17(9), 809–822.

    Article  Google Scholar 

  • Gustavsson, L., et al. (1995). Reducing CO2 emissions by substituting biomass for fossil fuels. Energy, 20(11), 1097–1113.

    Article  Google Scholar 

  • Hiller, C. (2003). Sustainable energy use in houses—Will the energy use increase with time? Report TVBH-3041. Lund: Lund Institute of Technology.

    Google Scholar 

  • IEA. (2008). Energy policies of IEA countries: Sweden 2008 review. Paris: International Energy Agency Publications. ISBN 978-92-64-04333-6.

    Google Scholar 

  • International Energy Agency. (1999). Electric power technology. Opportunities and challanges of competition. Paris.

  • International Energy Agency. (2002). World energy outlook (2002nd ed.). Paris: International Energy Agency Publications.

    Google Scholar 

  • IPCC. (2007). Fourth assessment report of WGIII, mitigation intergovernmental panel on climate change.

  • Joelsson, A. & Gustavsson, L. (2008). Perspectives on implementing energy efficiency in existing Swedish detached houses. Energy Policy, 36(1), 84–96.

    Article  Google Scholar 

  • Joelsson, A. & Gustavsson, L. (2009). District heating and energy efficiency in detached houses of differing size and construction. Applied Energy, 86, 126–134.

    Article  Google Scholar 

  • Junginger, M., et al. (2005). Technological learning and cost reductions in wood fuel supply chains in Sweden. Biomass and Bioenergy, 29, 399–418.

    Article  Google Scholar 

  • Karlsson Å. (2003). Comparative assessment of fuel-based systems for space heating. Ph.D. Thesis. Lund: Lund University, Environmental and Energy systems studies.

  • Larsson, M. (2005). Prisblad för biobränslen, torv m.m nr 3/2005 (Price-sheet for biomass-fuel, peat etc. nr 3/2005). Eskilstuna: Swedish Energy Agency. in Swedish.

    Google Scholar 

  • Lundborg, A. (1998). A sustainable forest fuel system in Sweden. Biomass and Bioenergy, 15(4–5), 399–406.

    Article  Google Scholar 

  • Mahapatra K. (2007) Diffusion of innovative domestic heating systems and multi-storey wood-framed buildings in Sweden. Doctoral Thesis. Östersund, Mid Sweden University, Ecotechnology and environmental science

  • McKinsey & Company. (2008). Möjligheter och kostander för att reducera växthusgasutsläpp i Sverige (Opportunities and costs of reducing greenhouse gas emissions in Sweden). Stockholm.

  • Natural Resources Canada. Heating with gas. [online]. Available from : http://oee.nrcan.gc.ca/publications/infosource/pub/home/Heating_With_Gas_Chapter3.cfm?attr=4. [accessed May 20 2009].

  • Norrman, S. & Johansson, P. (1995). Energihushållning: Ekonomisk utvärdering av energisparåtgärder i småhus (Energy conservation: Economic evaluation of energy conservation measures in single-family houses). Karlskrona: The National Board of Housing, Building and Planning. in Swedish.

    Google Scholar 

  • Sahlin, K. & Jernbäcker, E. (2004). Prognoser över utsläpp av växthusgaser (Predictions of the emission of greenhouse gases). Delrapport 1 i Energimyndighetens och naturvårdsverkets underlag till kontrollstation 2004. Eskilstuna and Stockholm: Swedish Environmental protection agency and Swedish Energy Agency. in Swedish.

    Google Scholar 

  • SCB. (2004). Peat 2003. Production, use, environmental impact. MI 25 SM 0401. Statistics Sweden.

  • SCB. (2008). El- och gaspriser jan 1997-jan 2007. [online], Statistics Sweden.2005. Available from: http://www.scb.se/statistik/EN/EN0302/2007H01/Internettablåer_jan07.xls [accessed January 23, 2008] (in Swedish).

  • Skarp, J. (2005). Handläggarstöd för utbyggnad av naturgasnätet (Support for handling expansion of the natural gas grid). 2005:12. Borlänge: Swedish Road Administration. in Swedish.

    Google Scholar 

  • Ståhl, K. & Neergaard, M. (1998). IGCC power plant for biomass utilisation, Värnamo, Sweden. Biomass and Bioenergy, 15(3), 205–211.

    Article  Google Scholar 

  • Statistics Sweden. (2005). Energy statistics for one- and two-dwelling buildings in 2004. Report EN 16 SM 0501. Örebro: Statistics Sweden.

    Google Scholar 

  • Stern, N. (2008). Stern review on the economics of climate change stern review on the economics of climate change [online]. HM Treasury. Available from:http://www.hm-treasury.gov.uk./independent_reviews/stern_review_economics_climate_change/sternreview_index.cfm [April].

  • Swedish Energy Agency. (2000). Prisblad för biobränslen, torv m.m nr 1/2000 (Price-sheet for biomass-fuel, peat etc. nr 1/2000). Eskilstuna, (in Swedish).

  • Swedish Energy Agency. (2002). Marginal elproduktion och CO2-utsläpp i Sverige (Marginal electricity production and CO2 emission in Sweden). Report ER 14:2002. Eskilstuna, (in Swedish).

  • Swedish Energy Agency. (2004). Energy in Sweden 2004. Report ET19:2004. Eskilstuna: Swedish Energy Agency.

    Google Scholar 

  • Swedish Energy Agency. (2006). Energiförsörjningen i Sverige (The electricity supply in Sweden). ER2006:22. Eskilstuna, (in Swedish).

  • Swedish Energy Agency. (2007a). Energy in Sweden 2007. ET 2007:49. Sweden: Eskilstuna.

    Google Scholar 

  • Swedish Energy Agency. (2007b). Energy in Sweden 2006. ET2007:50. Eskilstuna.

  • Swedish Petroleum Institute. (2005). Sammanfattning oljeåret 2004 (Summary of the year of oil 2004). Stockholm, (in Swedish).

  • Swedish Petroleum Institute. (2007). Sammanfattning oljeåret 2006 (Summary of the year of oil 2006). Stockholm, (in Swedish).

  • The Riksbank. Exchange rates. [online], The Riksbank,2007. Available from:http://www.riksbank.com/templates/Page.aspx?id=17182 [November 19, 2007].

  • US Department of commerce—Bureau of the Census. (2005). Characteristics of new housing. [online], Energy Information Administration. Available from: http://www.census.gov/const/www/charindex.html.

Download references

Acknowledgements

We acknowledge the economic support provided by The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Joelsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joelsson, A., Gustavsson, L. Energy efficiency measures and conversion of fossil fuel boiler systems in a detached house. Energy Efficiency 3, 223–236 (2010). https://doi.org/10.1007/s12053-009-9062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-009-9062-x

Keywords

Navigation