Hybrid controller for precision positioning application


In this paper, a precision positioning hybrid controller for long travel distance with submicron/nanometer resolution and accuracy is designed and developed. A hybrid control algorithm is designed to combine the coarse positioning system and a precision positioning system. The coarse positioning system consists of a linear stepper motor and coarse positioning controller, which is designed by microstepping with proportional-integral (PI) current feedback (MSPICF) control. In the precision positioning system, a piezoelectric actuator (PZA) is used. The mathematical model of the PZA has been represented by 2nd order mass-spring system with the Dahl hysteresis model and the model parameters are estimated by an autoregressive with exogenous terms (ARX) model identification technique using the input–output experimental data. The precision positioning controller designed by feedforward (FF) control which is the inverse of the mathematical model of the PZA and feedback (FB) control. The coarse, precision and hybrid controller is implemented using a low-cost DsPIC30F4012 microcontroller. Experiments have been performed to evaluate the performance of the controller.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1

    Binnig G and Rohrer H 1982 Scanning tunneling microscopy. Helvetica Phys. Acta. 55: 726–735

    Google Scholar 

  2. 2

    Binnig G, Quate C F and Gerber C 1986 Atomic force microscope. Phys. Rev. Lett. 56 (9):930–933

    Article  Google Scholar 

  3. 3

    Hwang C-L, Che Y-M, Sin J. K. O. and Jan C 2005 Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer based variable structure control. IEEE Trans. Control Syst. Technol. 13: 56–66

    Article  Google Scholar 

  4. 4

    Liu H, Lu B, Ding Y, Tang Y and Li D 2003 A motor-piezo actuator for nano-scale positioning based on dual servo loop and nonlinearity compensation. Inst. of Physics Publishing, J. Micromech. Microeng. 13

  5. 5

    Salapaka S, Sebastien A, Cleveland J P and Salapaka M V 2002 High bandwidth nano-positioner: a robust control approach. Rev. Sci. Instrum. 73: 3232-3241

    Article  Google Scholar 

  6. 6

    Michellod Y, Mullhaupt P and Gillet D 2006 Strategy for the Control of a Dual-stage Nano-positioning System with a Single Metrology. In: Robotics, Automation and Mechatronics, 2006 IEEE Conference, pp. 1–8

  7. 7

    Liu Y-T and Higuchi T 2001 Precision positioning device utilizing impact force of combined piezo-pneumatic actuator. IEEE/ASME Trans. Mechatron. 6(4): 467–473

    Article  Google Scholar 

  8. 8

    Mamun A Al, Mareels I, Lee T. H and Tay A 2003 Dual stage actuator control in hard disk drive—a review. In: 29th Annual Conference of the IEEE.

  9. 9

    Schroeck S J, Messner W C and McNab R J 2001 On compensator design for linear time-invariant dual-input single-output systems. IEEE/ASME Trans. Mechatronics 6: 50–57

    Article  Google Scholar 

  10. 10

    Liu Y-T, Fung R-F and Wang C-C 2005 Precision position control using combined piezo-VCM actuators. Precis. Eng. 29(4): 411–422

    Article  Google Scholar 

  11. 11

    Rakotondrabe M and Ivan I A 2011 Development and force/position control of a new hybrid thermo-piezoelectric microgripper dedicated to micromanipulation tasks. IEEE Trans. Autom. Sci. Eng. 8(4): 824–834

    Article  Google Scholar 

  12. 12

    Shen Q, Liu Y, Wang L, Liu J and Li K 2018 A long stroke linear stepping piezoelectric actuator using two longitudinal-bending hybrid transducers. Ceram. Int. 44(1): 104–107

    Article  Google Scholar 

  13. 13

    Deng J, Chen W, Li K, Wang L and Liu Y 2019 A sandwich piezoelectric actuator with long stroke and nanometer resolution by the hybrid of two actuation modes. Sensors Actuators A Phys. 296(1): 121–131

    Article  Google Scholar 

  14. 14

    Kim W, Choi I and Chung C 2010 Lyapunov-based control in microstepping with a nonlinear observer for permanent magnet stepper motors. In: Proceedings American Control Confernece, pp. 4313–4318

  15. 15

    Mukherjee A, Karmakar P, Shome S K, Sen S and Datta U 2016 Precision positioning system for long travel range and submicron resolution. In: 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, 2016. pp. 83–87

  16. 16

    Xu Q and Li Y 2010 Dahl model-based hysteresis compensation and precise positioning control of an XY Parallel Micromanipulator with piezoelectric actuation. J. Dyn. Syst. Meas. Control ASME

  17. 17

    Shome S K, Mukherjee A, Karmakar P, Datta U 2018 Sādhanā 43: 158

    Article  Google Scholar 

  18. 18

    Broersen P M T and Waele S D 2005 Automatic identification of time-series models from long autoregressive models. IEEE Trans. Instrum. Meas. 54(5): 1862–1868

    Article  Google Scholar 

  19. 19

    Zhao Y and Jayasuriya S 1995 Feedforward controllers and tracking accuracy in the presence of plant uncertainties. ASME J. Dyn. Syst., Meas. Control. 117: 490–495

    Article  MATH  Google Scholar 

  20. 20

    Devasia S 2002 Should model-based inverse inputs be used as feedforward under plant uncertainty. IEEE Trans. Autom. Control. 47(11): 1865–1871

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A MUKHERJEE.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

MUKHERJEE, A., SHOME, S.K., KARMAKAR, P. et al. Hybrid controller for precision positioning application. Sādhanā 45, 81 (2020). https://doi.org/10.1007/s12046-020-1323-6

Download citation


  • Microstepping control
  • stepper motor
  • feedforward control
  • feedback control
  • piezoelectric actuator