A mixed fractional Vasicek model and pricing Bermuda option on zero-coupon bonds


This paper considers the problem of pricing of Bermuda options on zero-coupon bond in which the dynamics of the interest rate model follows the mixed fractional Vasicek model. The strong convergence of the Euler discretization scheme for the mixed fractional Vasicek model is analysed. Specifically, we find an approximate formula for zero-coupon bond price. Numerical experiments are provided and compared for Bermuda-style call and put options with the Monte Carlo simulation approach.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1

    Choi Y and Wirjanto T S 2007 An analytic approximation formula for pricing zero-coupon bonds. Financ. Res. Lett. 4(2): 116–126

    Article  Google Scholar 

  2. 2

    Dia E and VanHoose D 2017 Banking in macroeconomic theory and policy. J. Macroecon. 54: 149–160

    Article  Google Scholar 

  3. 3

    Karpaviius S and Yu F 2017 The impact of interest rates on firms’ financing policies. J. Appl. Corp. Financ. 45: 262–293

    Article  Google Scholar 

  4. 4

    Cox J C, Ingersoll J E and Ross S A 2005 A theory of the term structure of interest rates. Theory of valuation, pp. 129–164

  5. 5

    Vasicek O 1977 An equilibrium characterization of the term structure. J. Financ. Econ. 5(2): 177–188

    Article  Google Scholar 

  6. 6

    Najafi A R and Mehrdoust F 2017 Bond pricing under mixed generalized CIR model with mixed Wishart volatility process. J. Comput. Appl. Math. 319: 108–116

    MathSciNet  Article  Google Scholar 

  7. 7

    Rostek S 2009 Option pricing in fractional Brownian markets. Lecture Notes in Economics and Mathematical Systems

  8. 8

    Mandelbrot B B and Van Ness J W 1968 Fractional Brownian motions, fractional noises and applications. SIAM. Rev. 10(4): 422–437

    MathSciNet  Article  Google Scholar 

  9. 9

    Najafi A R, Mehrdoust F and Samimi H 2018 Valuation of bid and ask prices for cap and floor contracts in a fractional Vasicek model, https://papers.ssrn.com/sol3/papers.cfm

  10. 10

    Chronopoulou A and Viens F G 2012 Estimation and pricing under long-memory stochastic volatility. Ann. Financ. 8(2–3): 379–403

    MathSciNet  Article  Google Scholar 

  11. 11

    Rogers L C G 1997 Arbitrage with fractional Brownian motion. Math. Financ. 7(1): 95–105

    MathSciNet  Article  Google Scholar 

  12. 12

    Bender C and Elliott R J 2004 Arbitrage in a discrete version of the Wick-fractional Black–Scholes market. Math. Oper. Res. 29(4): 935–945

    MathSciNet  Article  Google Scholar 

  13. 13

    Cheridito P 2003 Arbitrage in fractional Brownian motion models. Financ. Stoch. 7(4): 533–553

    MathSciNet  Article  Google Scholar 

  14. 14

    Zhang X and Xiao W 2017 Arbitrage with fractional Gaussian processes. Physica A: Stat. Mech. Appl. 471: 620–628

    MathSciNet  Article  Google Scholar 

  15. 15

    Mehrdoust F, Najafi A R, Fallah S and Samimi O 2018 Mixed fractional Heston model and the pricing of American options. J. Comput. Appl. Math. 330: 141–154

    MathSciNet  Article  Google Scholar 

  16. 16

    Guasoni P 2006 No arbitrage under transaction costs with fractional Brownian motion and beyond. Math. Financ. 16(3): 569–582

    MathSciNet  Article  Google Scholar 

  17. 17

    Cheridito P 2001 Mixed fractional Brownian motion. Bernoulli 7(6): 913–934

    MathSciNet  Article  Google Scholar 

  18. 18

    Pan J and Zhou X 2017 Pricing for options in a mixed fractional Hull–White interest rate model. Int. J. Numer. Methods Eng. 4(01): 1750011

    MathSciNet  Google Scholar 

  19. 19

    Chen Q, Zhang Q, and Liu C 2019 The pricing and numerical analysis of lookback options for mixed fractional Brownian motion. Chaos Solitons Fractals 128: 123–128

    MathSciNet  Article  Google Scholar 

  20. 20

    Zhang W G, Li Z and Liu Y J 2018 Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion. Physica A: Stat. Mech. Appl. 490: 402–418

    MathSciNet  Article  Google Scholar 

  21. 21

    Wu C H 2019 Perturbation solutions for bond-pricing equations under a multivariate CIR model with weak dependences. J. Comput. Appl. Math. 361: 207–226

    MathSciNet  Article  Google Scholar 

  22. 22

    Hayashi F 2018 Computing equilibrium bond prices in the Vayanos–Vila model. Res. Econ. 72(2): 181–195

    Article  Google Scholar 

  23. 23

    Deng G 2015 Pricing American put option on zero-coupon bond in a jump-extended CIR model. Commun. Nonlin. Sci. Numer. Simul. 22(1–3): 186–196

    MathSciNet  Article  Google Scholar 

  24. 24

    Lim H, Lee S and Kim G 2014 Efficient pricing of Bermudan options using recombining quadratures. J. Comput. Appl. Math. 271: 195–205

    MathSciNet  Article  Google Scholar 

  25. 25

    Borovykh A, Pascucci A and Oosterlee C W 2017 Pricing Bermudan options under local Levy models with default. J. Comput. Appl. Math. 450(2): 929–953

    MATH  Google Scholar 

  26. 26

    Bolia N and Juneja S 2005 Monte Carlo methods for pricing financial options. Sadhana 30(2–3): 347–385

    MathSciNet  Article  Google Scholar 

  27. 27

    Li Z, Zhang W, Zhang Y and Yi Z 2019 An analytical approximation approach for pricing European options in a two-price economy. North Am. J. Econ. Financ. 50: 100986

    Article  Google Scholar 

  28. 28

    Akalike H 1973 Information theory as an extension of the maximum likelihood principle . In: Petrov B N and Csaki F (Eds.) Proceedings of the Second International Symposium on Information Theory. Budapest: Akademiai Kiado, pp. 267–281

  29. 29

    Berg V D T 2011 Calibrating the Ornstein–Uhlenbeck (Vasicek) model. Web page http://www.sitmo.com/article/calibrating-the-ornstein-uhlenbeck-model/ (view date October 24th)

Download references

Author information



Corresponding author

Correspondence to Farshid Mehrdoust.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehrdoust, F., Najafi, A.R. & Samimi, H. A mixed fractional Vasicek model and pricing Bermuda option on zero-coupon bonds. Sādhanā 45, 58 (2020). https://doi.org/10.1007/s12046-020-1289-4

Download citation


  • Bermuda option
  • mixed fractional Vasicek model
  • zero-coupon bond
  • Monte Carlo simulation