Convective transport around two rotating tandem circular cylinders at low Reynolds numbers

Abstract

The convective transport around two rotating circular cylinders kept in a tandem configuration to an unconfined flow of an incompressible fluid (Prandtl number, Pr = 0.717) is investigated through two-dimensional numerical simulation. The flow Reynolds number is considered constant at Re = 100. Four different gap spacings between the tandem cylinders such as 0.2, 0.7, 1.5 and 3.0 are chosen for simulation. The cylinders are rotating about their centroidal axes for a range of dimensionless speed \( \left( {0 \le \Omega \le 2.75} \right) \). The rotation to the objects causes the unsteady periodic flow around them to become stabilized and at some critical rotational speed, the vortex shedding stops completely resulting in a steady flow pattern. The critical speed of rotation at which the vortex shedding completely stops is a function of the cylinder spacing. Overall, it is observed that increasing the gap increases the critical rotation rate. The thermal fields are also strongly stabilized as a result of the cylinder rotation. The rotating cylinders actually create a zone in their proximity which acts like a buffer to the convective transport. The conduction mode of heat transfer predominates in these regions causing the heat transfer rate to assume a decaying pattern with increasing the rotational speed at all cylinder spacings.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Abbreviations

C L :

Lift coefficient

C p :

Pressure coefficient

d :

Cylinder diameter (m)

f :

Vortex shedding frequency (Hz)

g :

Cylinder spacing (m)

g* :

Normalized gap spacing

N:

Normal direction

Nu:

Nusselt number

p :

Dimensionless Pressure

Pr :

Prandtl number

Re :

Reynolds number

St :

Strouhal number

t :

Time (s)

T :

Temperature (K)

\( T_{\infty } \) :

Free stream temperature (K)

\( U_{\infty } \) :

Free stream velocity (m/s)

T w :

Cylinder wall temperature (K)

x, y :

Coordinates (m)

\( \alpha \) :

Thermal diffusivity (m2/s)

\( \nu \) :

Kinematic viscosity of fluid (m2/s)

\( \theta \) :

Polar angle (rad)

\( \Theta \) :

Dimensionless temperature

\( \rho \) :

Density of fluid (kg/m3)

\( \omega \) :

Rotational speed (rad/s)

\( \Omega \) :

Dimensionless rotational speed

av :

Average

cr :

Critical

References

  1. 1

    Mittal S, Kumar V and Raghuvanshi A 2002 Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. Int. J. Numer. Methods Fluids 25: 1315–1344.

    MATH  Google Scholar 

  2. 2

    Meneghini J R, Saltara F, Siqueira C L R and Ferrari J A Jr 2001 Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. J. Fluids Struct. 15: 327–350.

    Google Scholar 

  3. 3

    Lin J C, Yang Y and Rockwell D 2002 Flow past two cylinders in tandem: Instantaneous and averaged flow structure. J. Fluids Struct. 16: 1059–1071.

    Google Scholar 

  4. 4

    Lee T and Basu S 1997 Nonintrusive measurements of the boundary layer developsing on a single and two circular cylinders. Exp. Fluids 23: 187–192.

    Google Scholar 

  5. 5

    Sumner D 2010 Two circular cylinders in cross-flow: A review. J. Fluids Struct. 26: 849–899.

    Google Scholar 

  6. 6

    Kostić Ž G and Oka S N 1972 Fluid flow and heat transfer with two cylinders in cross flow. Int. J. Heat Mass Transf. 15: 279–299.

    Google Scholar 

  7. 7

    King R and Johns D J 1976 Wake interaction experiments with two flexible circular cylinders in flowing water. J. Sound Vib. 45: 259–283.

    Google Scholar 

  8. 8

    Bearman P W and Wadcock A J 1973 The interaction between a pair of circular cylinders normal to a stream. J. Fluid Mech. 61: 499–511.

    Google Scholar 

  9. 9

    Zdravkovich M M 1977 Review of flow interference between two circular cylinders in various arrangements. J. Fluids Eng. 99, 618–633.

    Google Scholar 

  10. 10

    Stewart B E, Thompson M C, Leweke T and Hourigan K 2010 The wake behind a cylinder rolling on a wall at varying rotation rates. J. Fluid Mech. 648: 225–256.

    MATH  Google Scholar 

  11. 11

    Labraga L, Kahissim G, Keirsbulck L and Beaubert F 2007 An experimental investigation of the separation points on a circular rotating cylinder in cross flow. J. Fluids Eng. Trans. ASME 129: 1203–1211.

    Google Scholar 

  12. 12

    Kang S, Choi H and Lee S 1999 Laminar flow past a rotating circular cylinder. Phys. Fluids 11: 3312–3321.

    MATH  Google Scholar 

  13. 13

    Mittal S and Kumar B 2003 Flow past a rotating cylinder. J. Fluid Mech. 476: 303–334.

    MathSciNet  MATH  Google Scholar 

  14. 14

    Stojković D, Breuer M and Durst F 2002 Effect of high rotation rates on the laminar flow around a circular cylinder. Phys. Fluids 14: 3160–3178.

    MathSciNet  MATH  Google Scholar 

  15. 15

    Pralits J O, Brandt L and Giannetti F 2010 Instability and sensitivity of the flow around a rotating circular cylinder. J. Fluid Mech. 650: 513–536.

    MathSciNet  MATH  Google Scholar 

  16. 16

    Yoon D-H, Yang K-S and Bremhorst K 2011 Effects of Schmidt number on turbulent mass transfer around a rotating circular cylinder. J. Fluids Eng. Trans. ASME 133: 081204.

    Google Scholar 

  17. 17

    Chew Y T, Cheng M and Luo S C 1995 A numerical study of flow past a rotating circular cylinder using a hybrid vortex scheme. J. Fluid Mech. 299: 35–71.

    MATH  Google Scholar 

  18. 18

    Modi V J 1997 Moving surface boundary-layer control: A review. J. Fluids Struct. 11: 627–663.

    Google Scholar 

  19. 19

    Padrino J C and Joseph D D 2006 Numerical study of the steady-state uniform flow past a rotating cylinder. J. Fluid Mech. 557: 191–223.

    MathSciNet  MATH  Google Scholar 

  20. 20

    Tang T and Ingham D B 1991 On steady flow past a rotating circular cylinder at Reynolds numbers 60 and 100. Comput. Fluids 19: 217–230.

    MATH  Google Scholar 

  21. 21

    Tokumaru P T and Dimotakis P E 1993 The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech. 255: 1–10.

    Google Scholar 

  22. 22

    Rao A et al 2015 A review of rotating cylinder wake transitions. J. Fluids Struct. 53: 2–14.

    Google Scholar 

  23. 23

    Chatterjee D 2012 Triggering vortex shedding by superimposed thermal buoyancy around bluff obstacles in cross-flow at low reynolds numbers. Numer. Heat Transf. Part A Appl. 61: 800–806.

    Google Scholar 

  24. 24

    Mahfouz F M and Badr H M 1999 Heat convection from a cylinder performing steady rotation or rotary oscillation – Part I: Steady rotation. Heat Mass Transf. und Stoffuebertragung 34: 365–373.

    Google Scholar 

  25. 25

    Paramane S B and Sharma A 2009 Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime. Int. J. Heat Mass Transf. 52: 3205–3216.

    MATH  Google Scholar 

  26. 26

    Paramane S B and Sharma A 2010 Heat and fluid flow across a rotating cylinder dissipating uniform heat flux in 2D laminar flow regime. Int. J. Heat Mass Transf. 53: 4672–4683.

    MATH  Google Scholar 

  27. 27

    Nobari M R H and Ghazanfarian J 2010 Convective heat transfer from a rotating cylinder with inline oscillation. Int. J. Therm. Sci. 49: 2026–2036.

    MATH  Google Scholar 

  28. 28

    Pal Singh Bhinder A, Sarkar S and Dalal A 2012 Flow over and forced convection heat transfer around a semi-circular cylinder at incidence. Int. J. Heat Mass Transf. 55: 5171–5184.

    Google Scholar 

  29. 29

    Dulhani J P, Sarkar S and Dalal A 2014 Effect of angle of incidence on mixed convective wake dynamics and heat transfer past a square cylinder in cross flow at Re = 100. Int. J. Heat Mass Transf. 74: 319–332.

    Google Scholar 

  30. 30

    Varma N, Dulhani J P, Dalal A, Ganguly S and Sarkar S 2015 Effect of channel confinement on mixed convective flow past an equilateral triangular cylinder. J. Heat Transfer 137: 121013.

    Google Scholar 

  31. 31

    Badr H M and Dennis S C R 1985 Laminar forced convection from a rotating cylinder. Int. J. Heat Mass Transf. 28: 253–264.

    MATH  Google Scholar 

  32. 32

    Yoon H S, Kim J H, Chun H H and Choi H J 2007 Laminar flow past two rotating circular cylinders in a side-by-side arrangement. Phys. Fluids 19: 1–5.

    MATH  Google Scholar 

  33. 33

    Chan A S, Dewey P A, Jameson A, Liang C and Smits A J 2011 Vortex suppression and drag reduction in the wake of counter-rotating cylinders. J. Fluid Mech. 679: 343–382.

    MATH  Google Scholar 

  34. 34

    Chan A S and Jameson A 2010 Suppression of the unsteady vortex wakes of a circular cylinder pair by a doublet-like counter-rotation. Int. J. Numer. Methods Fluids 63: 22–39.

    MATH  Google Scholar 

  35. 35

    Yoon H S, Chun H H, Kim J H and Ryong Park I L 2009 Flow characteristics of two rotating side-by-side circular cylinder. Comput. Fluids 38: 466–474.

    MATH  Google Scholar 

  36. 36

    Yoon H S, Seo J H and Kim J H 2010 Laminar forced convection heat transfer around two rotating side-by-side circular cylinder. Int. J. Heat Mass Transf. 53: 4525–4535.

    MATH  Google Scholar 

  37. 37

    Nemati H, Farhadi M, Sedighi K, Pirouz M M and Abatari N N 2012 Convective heat transfer from two rotating circular cylinders in tandem arrangement by using lattice Boltzmann method. Appl. Math. Mech. (English Ed.) 33: 427–444.

    MathSciNet  Google Scholar 

  38. 38

    Fallah K, Fardad A, Sedaghatizadeh N, Fattahi E and Ghaderi A 2011 Numerical simulation of flow around two rotating circular cylinders in staggered arrangement by multi-relaxation-time lattice Boltzmann method at low Reynolds number. World Appl. Sci. J. 15: 544–554.

    Google Scholar 

  39. 39

    Darvishyadegari M and Hassanzadeh R 2018 Analysis of the convective heat transfer and flow behavior around two counter-rotating side-by-side cylinders. Heat Transf. Asian Res. 47: 835–854.

    Google Scholar 

  40. 40

    Darvishyadegari M and Hassanzadeh R 2019 Heat and fluid flow around two co-rotating cylinders in tandem arrangement. Int. J. Thermal Sci. 135: 206–220.

    Google Scholar 

  41. 41

    Darvishyadegari M and Hassanzadeh R 2019 Analysis of heat and fluid flow around two co-rotating side-by-side cylinders. Sādhanā 44: 107(1–18).

  42. 42

    Darvishyadegari M and Hassanzadeh R 2018 Convective heat transfer and fluid flow of two counter-rotating cylinders in tandem arrangement. Acta Mechanica 229: 1783–1802.

    MathSciNet  Google Scholar 

  43. 43

    Sohankar A, Norberg C and Davidson L 1998 Low-Reynolds flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. Int. J. Numer. Meth. Fluids 26: 39–56.

    MATH  Google Scholar 

  44. 44

    Sohankar A and Etminan A 2009 Forced convection heat transfer from tandem square cylinders in cross flow at low Reynolds number. Int. J. Numer. Meth. Fluids 60: 733–751.

    MATH  Google Scholar 

  45. 45

    ANSYS Fluent Theory Guide. 2013 Release 15.0. ANSYS, Inc.

  46. 46

    Leonard B P 1979 A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19: 59–98.

    MATH  Google Scholar 

  47. 47

    Mazzone V 1985 Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62: 40–65.

    MathSciNet  Google Scholar 

  48. 48

    Chatterjee D, Gupta K, Kumar V and Varghese S A 2017 Rotation induced flow suppression around two tandem circular cylinders at low Reynolds number. Fluid Dyn. Res. 49: 045503–1-17.

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dipankar Chatterjee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, D., Chaitanya, N.V.V.K. Convective transport around two rotating tandem circular cylinders at low Reynolds numbers. Sādhanā 45, 107 (2020). https://doi.org/10.1007/s12046-020-01358-6

Download citation

Keywords

  • Vortex shedding suppression
  • rotating circular cylinders
  • heat transfer
  • tandem arrangement
  • simulation
  • critical speed