Skip to main content
Log in

Thermal, electrical, mechanical and fluidity properties of polyester-reinforced concrete composites

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Polyester particles in concrete are preferred because they provide thermal, chemical and water resistance. In this study, thermal conductivity, electrical resistivity, mechanical strength and water resistance properties of concretes containing polyester granules such as flame-retardant polyester, cationic dyeable polyester and polyester with a low melting point-filled concrete have been analyzed using a full factorial design via Minitab® version 17. The effect of the most influential factors on thermal conductivity of polyester aggregate reinforced concrete composite has been determined as an interaction between the cationic dyeable and low-melt–point polyester. This mixture is suitable for production of thermal insulating concrete. Moreover, it is concluded that cationic dyeable polyester is the highest corrosion- and water-resistant product among the polyesters used in this study. The recovery rate of 33.94% in the thermal conductivity and 214.89% in the electrical resistivity of polyester-reinforced concrete composites has been obtained with a 28-day compressive strength loss of 41.94% according to the reference concrete in the full factorial design application. These results indicate that the polyester-reinforced concrete composites are quite effective in achieving thermal and corrosion resistance concrete but with noticeable compressive strength loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Xu F, Zhou M, Chen J and Ruan S 2014 Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Constr. Build. Mater. 63: 142–149. https://doi.org/10.1016/j.conbuildmat.2014.04.054

    Article  Google Scholar 

  2. Seleem H E H 2006 The effect of inorganic fillers on the mechanical and thermal properties of polyester. Polym. Plast. Technol. Eng. 45(5): 585–590. https://doi.org/10.1080/03602550600553754

    Article  Google Scholar 

  3. Heidari-Rarani M, Aliha M R M, Shokrieh M M and Ayatollahi M R 2014 Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings—An experimental study. Constr. Build. Mater. 64: 308–315. https://doi.org/10.1016/j.conbuildmat.2014.04.031

    Article  Google Scholar 

  4. Zhao L, Guo X, Ge C, Li Q, Guo L, Shu X and Liu J 2016 Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Constr. Build. Mater. 113: 470–478. https://doi.org/10.1016/j.conbuildmat.2016.03.090

    Article  Google Scholar 

  5. Martínez-Barrera G, Menchaca-Campos C and Gencel O 2013 Polyester polymer concrete: Effect of the marble particle sizes and high gamma radiation doses. Constr. Build. Mater. 41: 204–208. https://doi.org/10.1016/j.conbuildmat.2012.12.009

    Article  Google Scholar 

  6. Rohatgi P K, Matsunaga T and Gupta N 2009 Compressive and ultrasonic properties of polyester/fly ash composites. J. Mater. Sci. 44(6): 1485. https://doi.org/10.1007/s10853-008-3165-1

    Article  Google Scholar 

  7. Saribiyik M, Piskin A and Saribiyik A 2013 The effects of waste glass powder usage on polymer concrete properties. Constr. Build. Mater. 47: 840–844

    Article  Google Scholar 

  8. Shokrieh M M, Rezvani S and Mosalmani R 2015 A novel polymer concrete made from fine silica sand and polyester. Mech. Compos. Mater. 51(5): 571–580. https://doi.org/10.1007/s11029-015-9528-1

    Article  Google Scholar 

  9. Ribeiro M, Reis J, Ferreira A and Marques A 2003 Thermal expansion of epoxy and polyester polymer mortars—plain mortars and fibre-reinforced mortars. Polym. Test. 22(8): 849–857.

    Article  Google Scholar 

  10. Ribeiro M, Tavares C and Ferreira A 2002 Chemical resistance of epoxy and polyester polymer concrete to acids and salts. J. Polym. Eng. 22(1): 27–44

    Article  Google Scholar 

  11. Siddique R, Kapoor K, Kadri E H and Bennacer R 2012 Effect of polyester fibres on the compressive strength and abrasion resistance of HVFA concrete. Constr. Build. Mater. 29: 270–278. https://doi.org/10.1016/j.conbuildmat.2011.09.011

    Article  Google Scholar 

  12. Abu-Jdayil B, Mourad A H and Hussain A 2016 Thermal and physical characteristics of polyester–scrap tire composites. Constr. Build. Mater. 105: 472–479. https://doi.org/10.1016/j.conbuildmat.2015.12.180

    Article  Google Scholar 

  13. Nabinejad O, Sujan D, Rahman M E and Davies I J 2015 Effect of oil palm shell powder on the mechanical performance and thermal stability of polyester composites. Mater. Des. 65: 823–830. https://doi.org/10.1016/j.matdes.2014.09.080

    Article  Google Scholar 

  14. Jamshidi M and Pourkhorshidi A R 2012 Modified polyester resins as an effective binder for polymer concretes. Mater. Struct. 45(4): 521–527. https://doi.org/10.1617/s11527-011-9779-9

    Article  Google Scholar 

  15. Adeosun S O, Gbenebor O P, Akpan E I and Udeme F A 2016 Influence of organic fillers on physicochemical and mechanical properties of unsaturated polyester composites. Arabian J. Sci. Eng. 41(10): 4153–4159. https://doi.org/10.1007/s13369-016-2120-8

    Article  Google Scholar 

  16. Wang B, Qian T, Zhang Q, Zhan X and Chen F 2016 Heat resistance and surface properties of polyester resin modified with fluorosilicone. Surf. Coat. Technol. 304: 31–39. https://doi.org/10.1016/j.surfcoat.2016.06.075

    Article  Google Scholar 

  17. Lin J H, Hsieh J C, Lin J Y, Lin M C and Lou C W 2014 Polyester/low melting point polyester nonwoven fabrics used as soilless culture mediums: effects of the content of low melting point polyester fibers. In: Applied Mechanics and Materials 2014, pp. 49–52. Trans Tech Publ 10.4028/ https://doi.org/10.4028/www.scientific.net/AMM.457-458.49

  18. Carosio F, Di Blasio A, Cuttica F, Alongi J and Malucelli G 2014 Flame retardancy of polyester and polyester–cotton blends treated with caseins. Ind. Eng. Chem. Res. 53(10): 3917–3923

    Article  Google Scholar 

  19. Zhao M L, Li F X, Yu J Y and Wang X L 2014 Preparation and characterization of poly (ethylene terephthalate) copolyesters modified with sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate and poly (ethylene glycol). J. Appl. Polym. Sci. 131(3): 39823

    Article  Google Scholar 

  20. TS EN ISO 1183-1 2015 Plastics—Methods for determining the density of non-cellular plastics—Part 1: Immersion method, liquid pyknometer method and titration method. p. 22.

  21. TS EN ISO 527-1 2015 Plastics—Determination of tensile properties—Part 1: General principles. p. 33

  22. Bounouri Y, Berkani M, Zamouche A and Rycerz L 2017 Optimization and modeling of synthesis parameters of neodymium(III) bromide by dry method using full factorial design analysis. Arabian J. Chem. https://doi.org/10.1016/j.arabjc.2017.05.003

    Google Scholar 

  23. Cintas P G, Almagro L M and Llabrés X T M 2012 Pareto charts and cause–effect diagrams. In: Industrial Statistics with Minitab. Wiley, pp. 31–36

  24. Şimşek B and Uygunoğlu T 2016 Multi-response optimization of polymer blended concrete: A TOPSIS based Taguchi application. Constr. Build. Mater. 117: 251–262. https://doi.org/10.1016/j.conbuildmat.2016.05.027

    Article  Google Scholar 

  25. Huang J, Lv H, Gao T, Feng W, Chen Y and Zhou T 2014 Thermal properties optimization of envelope in energy-saving renovation of existing public buildings. Energy Build. 75: 504–510. https://doi.org/10.1016/j.enbuild.2014.02.040

    Article  Google Scholar 

  26. ASTM C1113/C1113M-09 2013 Standard test method for thermal conductivity of refractories by hot wire (Platinum Resistance Thermometer Technique) (American Society for Testing and Materials, West Conshohocken, PA)

  27. Wang H, Yang J, Liao H and Chen X 2016 Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Constr. Build. Mater. 122: 184–190. https://doi.org/10.1016/j.conbuildmat.2016.06.063

    Article  Google Scholar 

  28. Lübeck A, Gastaldini A L G, Barin D S and Siqueira H C 2012 Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag. Cem. Concr. Compos. 34(3): 392–399. https://doi.org/10.1016/j.cemconcomp.2011.11.017

    Article  Google Scholar 

  29. TS EN 2010 Testing Hardened Concrete—Part 3, Compressive Strength of Test Specimens. p. 21. Ankara

  30. TS EN 2010 Testing Hardened Concrete—Part 6, Determination of Splitting Tensile Strength of Concrete Specimens. p. 13. Ankara

  31. TS EN 2010 Testing fresh concrete-Part 5, Flow table test. p. 9. Ankara

  32. TS EN 12390 2010 Testing Hardened Concrete—Part 7, Density of Hardened Concrete, p. 12. Ankara.

  33. Şimşek B, İç Y T and Şimşek E H 2016 A RSM-based multi-response optimization application for determining optimal mix proportions of standard ready-mixed concrete. Arabian J. Sci. Eng. 41(4): 1435–1450. https://doi.org/10.1007/s13369-015-1987-0

    Article  Google Scholar 

  34. Marzouk O Y, Dheilly R M and Queneudec M 2007 Valorization of post-consumer waste plastic in cementitious concrete composites. Waste Manage. 27(2): 310–318. https://doi.org/10.1016/j.wasman.2006.03.012

    Article  Google Scholar 

  35. Gu L and Ozbakkaloglu T 2016 Use of recycled plastics in concrete: a critical review. Waste Manage. 51: 19–42. https://doi.org/10.1016/j.wasman.2016.03.005

    Article  Google Scholar 

  36. Fraj A B, Kismi M and Mounanga P 2010 Valorization of coarse rigid polyurethane foam waste in lightweight aggregate concrete. Constr. Build. Mater. 24(6): 1069–1077

    Article  Google Scholar 

  37. Goñi S, Frias M, Vegas I, García R and de la Villa R V 2012 Quantitative correlations among textural characteristics of C–S–H gel and mechanical properties: case of ternary Portland cements containing activated paper sludge and fly ash. Cem. Concr. Compos. 34(8): 911–916. https://doi.org/10.1016/j.cemconcomp.2012.05.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bariş Şimşek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şimşek, B., Uygunoğlu, T. Thermal, electrical, mechanical and fluidity properties of polyester-reinforced concrete composites. Sādhanā 43, 57 (2018). https://doi.org/10.1007/s12046-018-0847-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-0847-5

Keywords

Navigation