Sādhanā

, 43:65 | Cite as

A meta-heuristic cuckoo search and eigen permutation approach for model order reduction

  • Akhilesh Kumar Gupta
  • Deepak Kumar
  • Paulson Samuel
Article
  • 11 Downloads

Abstract

In this paper, a new model order reduction technique is presented by combining the benefits of the meta-heuristic cuckoo search optimization and Eigen permutation methods for order reduction of higher order continuous-time systems. In the proposed approach, the numerator and the denominator polynomials of reduced order model are determined by Cuckoo search and Eigen permutation approaches, respectively. The proposed approach preserves the stability of the original system into the lower order model as the Eigen permutation retains the dominant pole with simultaneous cluster formation of the remaining real and complex poles. The effectiveness of the proposed method is validated by single-input single-output and multiple-inputs multiple-outputs numerical examples.

Keywords

Cuckoo search Eigen permutation Lévy flight model order reduction MOR 

References

  1. 1.
    Chen C F and Shich L S 1968 A novel approach to linear model simplification. Int. J. Control 8(6): 561–570CrossRefGoogle Scholar
  2. 2.
    Shamash Y 1976 Continued fraction methods for reduction of constant-linear multivariable systems. Int. J. Syst. Sci. 7(7): 743–758MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chuang S C 1970 Application of continued-fraction method for modelling transfer functions to give more accurate initial transient response. Electron. Lett. 6(26): 861–863CrossRefGoogle Scholar
  4. 4.
    Shamash Y 1974 Stable reduced-order models using Padè type approximations. IEEE Trans. Autom. Control 19(5): 615–616CrossRefMATHGoogle Scholar
  5. 5.
    Zakian V 1973 Simplification of linear time-invariant systems by moment approximants. Int. J. Control 18(3): 455–460MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Pal J 1983 Improved Padé approximants using stability equation method. Electron. Lett. 19(1): 426–427CrossRefGoogle Scholar
  7. 7.
    Shamash Y 1975 Linear system reduction using Padé approximation to allow retention of dominant modes. Int. J. Control 21(2): 257–272CrossRefMATHGoogle Scholar
  8. 8.
    Lucas T N 1983 Factor division: a useful algorithm in model reduction. IEE Proc. 130(6): 362–364CrossRefMATHGoogle Scholar
  9. 9.
    Wan B W 1981 Linear model reduction using Mihailov criterion and Padé approximation technique. Int. J. Control 33(6): 1073–1089CrossRefMATHGoogle Scholar
  10. 10.
    Hutton M and Friedland B 1975 Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans. Autom. Control AC 20(3): 329–337MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Appiah R K 1978 Linear model reduction using Hurwitz polynomial approximation. Int. J. Control 28(3): 477–488MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Appiah R K 1979 Padè methods of Hurwitz polynomial approximation with application to linear system reduction. Int. J. Control 29(1): 39–48MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chen T C, Chang C Y and Han K W 1980 Stable reduced-order Padè approximants using stability-equation method. Electron. Lett. 16(9): 345–346CrossRefGoogle Scholar
  14. 14.
    Gutman P O, Mannerfelt C F and Molander P 1982 Contributions to the model reduction problem. IEEE Trans. Autom. Control 27(2): 454–455CrossRefMATHGoogle Scholar
  15. 15.
    Yadav J S, Patidar N P, Singhai J, Panda S and Ardil C 2011 A combined conventional and differential evolution method for model order reduction. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 5(9): 1284–1291Google Scholar
  16. 16.
    Panda S, Tomar S K, Prasad R and Ardil C 2009 Model reduction of linear systems by conventional and evolutionary techniques. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 3(11): 2150–2156MathSciNetGoogle Scholar
  17. 17.
    Liaw C M 1989 Mixed method of model reduction for linear multivariable systems. Int. J. Syst. Sci. 20(11): 2029–2041MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Narwal A and Prasad R 2015 A novel order reduction approach for LTI systems using Cuckoo search and Routh Approximation. In: IEEE International Advanced Computing Conference, pp. 564–569Google Scholar
  19. 19.
    Pal J 1980 System reduction by a mixed method. IEEE Trans. Autom. Control AC 25(5): 973–976MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pal J, Sinha A K and Sinha N K 1995 Reduced order modelling using pole clustering and time moment matching. J. Inst. Eng. (India) Electr. Eng. Div. 76: 1–6Google Scholar
  21. 21.
    Parmar G, Prasad R and Mukherjee S 2007 A mixed method for large-scale systems modelling using eigen spectrum analysis and Cauer second form. IETE J. Res. 53(2): 93–102CrossRefGoogle Scholar
  22. 22.
    Sikander A and Prasad R 2015 Linear time invariant system reduction using a mixed methods approach. Appl. Math. Model. 39(16): 4848–4858MathSciNetCrossRefGoogle Scholar
  23. 23.
    Singh J, Vishwakarma C B and Chatterjee K 2016 Biased reduction method by combining improved modified pole clustering and improved Pade approximants. Appl. Math. Model. 40: 1418–1426MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wilson D A 1970 Optimal solution of model reduction problem. Proc. IEE 117(6): 1161–1165Google Scholar
  25. 25.
    Wilson D A 1974 Model reduction for multivariable systems. Int. J. Control 20(1): 57–64CrossRefMATHGoogle Scholar
  26. 26.
    Goldberg D E 1989 Genetic Algorithms in Search, Optimization, and Machine Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co. Inc.MATHGoogle Scholar
  27. 27.
    Satakshi, Mukherjee S and Mittal R C 2005 Order reduction of linear discrete systems using a genetic algorithm. Appl. Math. Model. 29(6): 565–578CrossRefMATHGoogle Scholar
  28. 28.
    Soloklo H N and Farsangi M M 2013 Chebyshev rational functions approximation for model order reduction using harmony search. Sci. Iran. 20(3): 771–777Google Scholar
  29. 29.
    Kennedy J and Eberhart R 1995 Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4: 1942–1948Google Scholar
  30. 30.
    Sikander A and Prasad R 2015 Soft computing approach for model order reduction of linear time invariant systems. Circuits Syst. Signal Process. 34: 3471–3487CrossRefGoogle Scholar
  31. 31.
    Gallehdari Z, Karrari M and Malik O P 2009 Model order reduction using PSO algorithm and it’s application to power systems. In: IEEE International Conference on Electric Power and Energy Conversion Systems EPECS09, pp. 1–5, SharjahGoogle Scholar
  32. 32.
    Philip B and Pal J 2010 An evolutionary computation based approach for reduced order modelling of linear systems. In: IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) Coimbatore, India, pp. 28–29Google Scholar
  33. 33.
    Desai S R and Prasad R 2013 A new approach to order reduction using stability equation and big bang big crunch optimization. Syst. Sci. Control Eng. 1(1): 20–27CrossRefGoogle Scholar
  34. 34.
    Desai S R and Prasad R 2013 A novel order diminution of LTI systems using Big Bang Big Crunch optimization and Routh Approximation. Appl. Math. Model. 37(16–17): 8016–8028MathSciNetCrossRefGoogle Scholar
  35. 35.
    Biradar S, Hote Y V and Saxena S 2016 Reduced-order modeling of linear time invariant systems using big bang big crunch optimization and time moment matching method. Appl. Math. Model. 40(15–16): 7225–7244MathSciNetCrossRefGoogle Scholar
  36. 36.
    Yang X S and Deb S 2010 Engineering optimization by Cuckoo Search. Int. J. Math. Model. Numer. Optim. 1(4): 330–343MATHGoogle Scholar
  37. 37.
    Long W, Liang X, Huang Y and Chen Y 2014 An effective hybrid cuckoo search algorithm for constrained global optimization. Neural Comput. Appl. 25: 911–926.  https://doi.org/10.1007/s00521-014-1577-1 CrossRefGoogle Scholar
  38. 38.
    Kanagaraj G, Ponnambalam S G and Jawahar N 2013 A hybrid cuckoo search and genetic algorithm for reliability–redundancy allocation problems. Comput. Ind. Eng. 66: 1115–1124CrossRefGoogle Scholar
  39. 39.
    Sikander A, Thakur P and Uniyal I 2016 Hybrid method of reduced order modelling for LTI system using evolutionary algorithm In: 2nd International Conference on Next Generation Computing Technologies (NGCT), Dehradun, pp. 84–88Google Scholar
  40. 40.
    Sikander A and Thakur P Reduced order modelling of linear time-invariant system using modified cuckoo search algorithm. Soft Comput.  https://doi.org/10.1007/s00500-017-2589-4
  41. 41.
    Walton S, Hassan O and Morgan K 2013 Reduced order mesh optimisation using proper orthogonal decomposition and a modified cuckoo search. Int. J. Numer. Meth. Eng. 93: 527–550MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Singh J, Chatterjee K and Vishwakarma C B 2014 System reduction by eigen permutation algorithm and improved Padé approximations. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 8(1): 180–184Google Scholar
  43. 43.
    Narwal A and Prasad R 2015 A novel order reduction approach for LTI systems using cuckoo search optimization and stability equation. IETE J. Res. 62(2): 1–10Google Scholar
  44. 44.
    Yang X S and Deb S 2010 Nature-Inspired Meta Heuristic Algorithms. Second Edition UK: Luniver Press, pp. 105–117Google Scholar
  45. 45.
    Parmar G, Prasad R and Mukherjee S 2007 Order reduction of linear dynamic systems using stability equation method and GA. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 1(2): 236–242Google Scholar
  46. 46.
    Pal J 1979 Stable reduced order Padé approximants using the Routh Hurwitz array. Electron. Lett. 15(8): 225–226CrossRefGoogle Scholar
  47. 47.
    Vishwakarma C B 2009 Model Order Reduction Using of Linear Dynamic Systems for Control System Design Ph.D. Thesis IIT Roorkee, Roorkee, IndiaGoogle Scholar
  48. 48.
    Parmar G, Prasad R and Mukherjee S 2007 System reduction using factor division algorithm and eigen spectrum analysis. Appl. Math. Model. 31(11): 2542–2552CrossRefMATHGoogle Scholar
  49. 49.
    Mukherjee S, Satakshi and Mittal R C 2005 Model order reduction using response matching technique. J. Frankl. Inst. 342(5): 503–519MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Mittal A K, Prasad R and Sharma S P 2004 Reduction of linear dynamic systems using an error minimization technique. J. Inst. Eng. India Part El Electr. Eng. Div. 84: 201–206Google Scholar
  51. 51.
    Mukherjee S and Mishra R N 1987 Order reduction of linear systems using an error minimization technique. J. Frank. Inst. 323(1): 23–32MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Prasad R, Pal J and Pant A K 1995 Multivariable system approximation using polynomial derivatives. J. Inst. Eng. India Part El Electr. Eng. Div. 76: 186–188Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Akhilesh Kumar Gupta
    • 1
  • Deepak Kumar
    • 1
  • Paulson Samuel
    • 1
  1. 1.Motilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations