Sādhanā

, Volume 42, Issue 1, pp 33–44 | Cite as

Reconfiguration on nanocrossbar using material implication

  • Pravin Mane
  • Nishil Talati
  • Ameya Riswadkar
  • Ramesh Raghu
  • C K Ramesha
Article
  • 139 Downloads

Abstract

Reconfigurable architectures (FPGA) with embedded memory elements face problems in retaining data for longer duration due to leakage current as it becomes dominant in nanometer devices in conventional technologies. Also, LUT-based designs consume more area, are slow in processing data and dissipate more power because of complex interconnection network. Memristor, a new nonvolatile memory element, can be used to overcome these limitations. In this paper, we propose an implication-NOR logic-gate-based FPGA architecture using memristors for implementation of logic functions and with embedded memory for storing data. The automation algorithm for the same is presented.

Keywords

Memristor FPGA ASIC CMOL FPNI implication 

References

  1. 1.
    Cuniberti G, Fagas G and Richter K (Eds.) 2005 Introducing molecular electronics, 1st edn. Springer Publishing Company, IncorporatedGoogle Scholar
  2. 2.
    Kim K, Shin S and Kang S-M S 2011 Field programmable stateful logic array. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(12): 1800–1813. doi: 10.1109/TCAD.2011.2165067
  3. 3.
    Kuon I and Rose J 2009 Quantifying and exploring the gap between FPGAs and ASICs, 1st edn. Springer Publishing Company, Incorporated, ISBN: 1441907386, 9781441907387Google Scholar
  4. 4.
    Snider G S and Williams R S 2007 Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18(3): 035204. http://stacks.iop.org/0957-4484/18/i=3/a=035204
  5. 5.
    Strukov D B, Stewart D R, Borghetti J, Li X, Pickett M, Ribeiro G M, Robinett W, Snider G, Strachan J P, Wu W, Xia Q, Yang J J and Williams R S 2010 Hybrid CMOS/memristor circuits. In: Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS), pp. 1967–1970 doi: 10.1109/ISCAS.2010.5537020
  6. 6.
    Strukov D B and Likharev K K 2005 CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6): 888–890. http://stacks.iop.org/0957-4484/16/i=6/a=045
  7. 7.
    Chua L O 1971 Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5): 507–519. doi: 10.1109/TCT.1971.1083337 CrossRefGoogle Scholar
  8. 8.
    Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Memristor—the missing circuit element. Nature 453: 80–83CrossRefGoogle Scholar
  9. 9.
    Strukov D B 2012 3D hybrid CMOS/memristor circuits: basic principle and prospective applications. In: Proceedings of the 2012, Conference on Optoelectronic and Microelectronic Materials Devices (COMMAD), pp. 21–22. doi: 10.1109/COMMAD.2012.6472340
  10. 10.
    Strukov D B and Likharev K K 2007 Defect-tolerant architectures for nanoelectronic crossbar memories. J. Nanosci. Nanotechnol. 7(1):151–167Google Scholar
  11. 11.
    Jo S H and Lu W 2008 CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett. 8(2): 392–397. doi: 10.1021/nl073225h PMID: 18217785
  12. 12.
    Yang J J, Zhang M-X, Strachan J P, Miao F, Pickett M D, Kelley RD, Medeiros-Ribeiro G and Williams R S 2010 High switching endurance in TaO\(_x\) memristive devices. Appl. Phys. Lett. 97(23). doi: 10.1063/1.3524521. http://scitation.aip.org/content/aip/journal/apl/97/23/10.1063/1.3524521
  13. 13.
    Xia Q, Robinett W, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X, Tong W M, Strukov D B, Snider G S, Medeiros-Ribeiro G and Williams R S 2009 Memristor/CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10): 3640–3645 doi: 10.1021/nl901874j. PMID: 19722537CrossRefGoogle Scholar
  14. 14.
    Strukov D B and Likharev K K 2006 A reconfigurable architecture for hybrid CMOS/nanodevice circuits. In: Proceedings of the 2006 ACM/SIGDA 14th international symposium on field programmable gate arrays. FPGA ’06, ACM,New York, NY, USA, pp. 131–140 ISBN1-59593-292-5. doi: 10.1145/1117201.1117221
  15. 15.
    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4): 1297–1301. PMID: 20192230. doi: 10.1021/nl904092h
  16. 16.
    Kvatinsky S, Friedman E G, Kolodny A and Weiser U C 2013 TEAM: ThrEshold adaptive memristor model. IEEE Trans. Circuits I Regular Papers 60(1): 211–221. doi: 10.1109/TCSI.2012.2215714 MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang L, Chen Z, Joshua Yang J, Wysocki B, McDonald N and Chen Y 2013 A compact modeling of TiO\(_{2}\)-TiO\(_{2{\rm x}}\) memristor. Appl. Phys. Lett. 102(15). doi: 10.1063/1.4802206. http://scitation.aip.org/content/aip/journal/apl/102/15/10.1063/1.4802206

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Pravin Mane
    • 1
  • Nishil Talati
    • 1
  • Ameya Riswadkar
    • 1
  • Ramesh Raghu
    • 1
  • C K Ramesha
    • 1
  1. 1.Department of Electrical and Electronics Engineering/Electronics and Instrumentation EngineeringBITS Pilani, K K Birla Goa CampusZuarinagarIndia

Personalised recommendations