CRISPR/Cas for Crop Improvement

A Brief Review

Abstract

CRISPR/Cas technology, among the other gene editing systems like TALENs, ZFNs and homing endonucleases, is the preferred choice for genome modification in all types of organisms—from microbes, plants to animals—and has countless applications in various disciplines as diverse as industries, basic research and medicines. In the recent past, this gene editing technology has been used for targeting multiple genes in various crops including Arabidopsis, rice, maize, soybean and tobacco for producing new varieties with improved traits like increased yield, biotic and abiotic stress tolerance, improved food quality. The advantages of this technology over genetic engineering for producing elite plants (nontransgenics) will avoid the stringent regulatory tests and ethical issues related to these plants being accepted by the public.

This is a preview of subscription content, access via your institution.

Suggested Reading

  1. [1]

    Y Oladosu, et al., Principle and application of plant mutagenesis in crop improvement: A review, Biotechnol. Biotechnol. Equip., Vol.30, pp.1–16, 2016.

    Article  Google Scholar 

  2. [2]

    N Podevin, H V Davies, F Hartung, F Nogue, JM Casacuberta, Site-directed nucleases: A paradigm shift in predictable knowledge based plant breeding, Trends Biotechnol., Vol.31(6), pp.375–383, 2013.

    Article  Google Scholar 

  3. [3]

    J Smith, et al., A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences, Nuc. Acid. Res., Vol.34, e149, 2006.

    Article  Google Scholar 

  4. [4]

    H Puchta and F Fauser, Synthetic nucleases for genome engineering in plants: Prospects for a bright future, Plant J., Vol.78 pp.727–741, 2014.

    Article  Google Scholar 

  5. [5]

    G Hensel and J Kumlehn, Genome engineering using TALENs, Methods Mol. Biol., Vol.1900, pp.195–215, 2019.

    Article  Google Scholar 

  6. [6]

    Y Mao, et al., Development of germ-line specific Crispr-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis, Plant Biotechnol. J., Vol.14, pp.519–532, 2016.

    Article  Google Scholar 

  7. [7]

    A Sandhya, P Jogam, V R Allini, S Abbagani, A Alok, The present and potential future methods for delivering CRISPR/Cas9 components in plants, J. Genet. Eng. Biotech., Vol.18, p.25, 2020.

    Article  Google Scholar 

  8. [8]

    T Čermćk, et al., A Multipurpose toolkit to enable advanced genome engineering in plants, Plant Cell, Vol.29, pp.1196–1217, 2017.

    Article  Google Scholar 

  9. [9]

    L Cong, et al., Multiplex genome engineering using CRISPR/Cas systems, Science, Vol.339, pp.819–823, 2013.

    Article  Google Scholar 

  10. [10]

    M Andersson, et al., Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery, Physiol. Plant, Vol.164, pp.378–384, 2018.

    Article  Google Scholar 

  11. [11]

    B Castel, L Tomlinson, F Locci, Y Yang, JD Jones, Optimization of T-DNA Architecture for Cas9 Mediated Mutagenesis in Arabidopsis, Plos One, Vol.14(1), e0204778, 2019.

    Article  Google Scholar 

  12. [12]

    Kaur, et al., CRISPR/Cas9-mediated efficient editing in phyotene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome, Func. Integ. Genom., Vol.18(1), pp.89–99, 2018.

    Article  Google Scholar 

  13. [13]

    Y Zhang, Z Liang, Y Zong, Y Wang, J Liu, et al., Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA, Nat. Comm., Vol.7, pp.12617, 2016.

    Article  Google Scholar 

  14. [14]

    W Wang, Q Pan, F He, A Akhunov, S Chao, H Trick, et al., Trans-generational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat, CRISPR J., Vol.1, pp.65–74. 2018. doi: https://doi.org/10.1089/crispr.2017.0010

    Article  Google Scholar 

  15. [15]

    M Li, X Li, Z Zhou, et al., Reassessment of the four yield-related genes Gn1a, DEP1, GS3 and IPA1 in rice using a CRISPR/Cas9 system, Front. Plant Sci., Vol.7, pp.377, 2016.

    Google Scholar 

  16. [16]

    Y Zhang, Z Liang, Y Zong, et al., Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA, Nat. Comm., Vol.7, pp.12617, 2016.

    Article  Google Scholar 

  17. [17]

    Z Liang, K Zhang, K Chen, et al., Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas System, J. Genet. Genomics., Vol.41, pp.63–68, 2014.

    Article  Google Scholar 

  18. [18]

    H Zhang, J Zhang, Z Lang, et al., Genome-editing-Principles and applications for functional genomics research and crop improvement, Crit. Rev. Plant Sci., Vol.36(4), pp.291–309, 2017.

    Article  Google Scholar 

  19. [19]

    Y Yang, G Zhu, R Li, et al., The RNA editing factor SlORRM4 is required for normal fruit ripening in tomato, Plant Physiol., Vol.175, pp.1690–1702, 2017.

    Article  Google Scholar 

  20. [20]

    Y Sun, G Jiao, Z Liu, X Zhang, J Li, et al., Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes, Front. Plant Sci., Vol.8, pp.1298, 2018.

    Google Scholar 

  21. [21]

    M Andersson, H Turesson, A Nicolia, AS Falt, M Samuelsson, P Hofvander, Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts, Plant Cell Rep., Vol.36, pp.117–28, 2017.

    Article  Google Scholar 

  22. [22]

    A Peng, et al., Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus, Plant Biotechnol. J., Vol.15, pp.1509–1519, 2017.

    Article  Google Scholar 

  23. [23]

    V Nekrasov, C Wang, J Win, et al., Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion, Sci. Rep., Vol.7, pp.482, 2017.

    Article  Google Scholar 

  24. [24]

    Z Zhang, X Ge, X Luo, et al., Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton, Front. Plant Sci., pp.842, 2018.

  25. [25]

    X Wang, M Tu, D Wang, et al., CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation, Plant Biotechnol. J., Vol.16, pp.844–855, 2018.

    Article  Google Scholar 

  26. [26]

    A Endo, et al., Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida, Sci. Rep., Vol.6, pp.38169, 2016.

    Article  Google Scholar 

  27. [27]

    J Shi, H Gao, H Wang, HR Lafitte, RL Archibald, et al., ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions, Plant Biotechnol. J., Vol.15(2), pp.207–216, 2017.

    Article  Google Scholar 

  28. [28]

    T Lawrenson, et al., Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease, Genome Biol., Vol.16, pp.258, 2015.

    Article  Google Scholar 

  29. [29]

    M Klimek-Chodacka, T Oleszkiewicz, L Lowder, et al., Efficient CRISPR/Cas9-based genome editing in carrot cells, Plant Cell Rep., Vol.37, pp.575–586, 2018.

    Article  Google Scholar 

  30. [30]

    M Andersson, et al., Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery, Physiol. Plant., Vol.164, pp.378–384, 2018.

    Article  Google Scholar 

  31. [31]

    A Charrier, et al., Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system, Front. Plant Sci., Vol.10, pp.40, 2019.

    Article  Google Scholar 

  32. [32]

    S Nonaka, C Arai, M Takayama, et al., Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis, Sci. Rep., Vol.7, pp.7057, 2017.

    Article  Google Scholar 

  33. [33]

    R Barrangou and L Marraffini, CRISPR-Cas Systems: Prokaryotes upgrade to adaptive immunity, Mol. Cell., Vol.54, pp.234–244, 2014.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Arvinder Singh or Muskan Bokolia.

Additional information

Arvinder Singh is Assistant Professor in Botany, Akal University, Talwandi Sabo, Punjab. He specializes in seed proteomics and his research involves the characterization and improvement of seed protein quality in cereals and legumes.

Muskan Bokolia is research scholar in Department of Botany, Akal University, Talwandi Sabo, Punjab. She is currently working on the characterization of seed proteins in cotton.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Bokolia, M. CRISPR/Cas for Crop Improvement. Reson 26, 227–240 (2021). https://doi.org/10.1007/s12045-021-1121-4

Download citation

Keywords

  • rDNA technology
  • CRISPR
  • Cas
  • gene editing
  • spacers
  • genetic engineering
  • crop improvement