Structure of weakly one-sided duo Ore extensions

Abstract

Marks (J. Algebra 280 (2004) 463–471) proved that if the skew polynomial ring \(R[x;\sigma ]\) is left or right duo, then \(R[x;\sigma ]\) is commutative. It is proved that if \(R[x;\sigma ]\) is weakly left (resp., right) duo over a reduced ring R with an endomorphism (resp., a monomorphism) \(\sigma \), then \(R[x;\sigma ]\) is commutative. This concludes that a noncommutative skew polynomial ring is not weakly left duo when the base ring is reduced. It is also shown that if \(R[x;\sigma ]\) is weakly left duo then the polynomial ring R[x] is weakly left duo. We next study the structure of the Ore extension \(R[x; \sigma ,\delta ]\) when it is weakly left or right duo.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Amitsur S A, Radicals of polynomial rings, Can. J. Math. 8 (1956) 355–361

    MathSciNet  Article  Google Scholar 

  2. 2.

    Armendariz E P, A note on extensions of Baer and P.P.-rings J. Austral. Math. Soc. 18 (1974) 470–473

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bedi S S and Ram J, Jacobson radical of skew polynomial rings and skew group rings, Israel J. Math. 35 (1980) 327–338

    MathSciNet  Article  Google Scholar 

  4. 4.

    Brungs H H, Three questions on duo rings, Pac. J. Math. 58 (1975) 345–349

    MathSciNet  Article  Google Scholar 

  5. 5.

    Feller E H, Properties of primary noncommutative rings, Trans. Am. Math. Soc. 89 (1958) 79–91

    MathSciNet  Article  Google Scholar 

  6. 6.

    Goodearl K R, Prime Ideals in Skew Polynomial Rings and Quantized Weyl Algebras, J. Algebra 150 (1992) 324–377

    MathSciNet  Article  Google Scholar 

  7. 7.

    Goodearl K R and Warfield R B, An Introduction to Noncommutative Noetherian Rings (2004) (Cambridge: Cambridge University Press)

    Google Scholar 

  8. 8.

    Hong C Y, Kim N K and Kwak T K, Ore extensions of Baer and p.p.-rings , J. Pure Appl. Algebra 151 (2000) 215–226

    MathSciNet  Article  Google Scholar 

  9. 9.

    Hong C Y, Kim N K and Kwak T K, On skew Armendariz rings, Commun. Algebra 31 (2003) 103–122

    MathSciNet  Article  Google Scholar 

  10. 10.

    Hong C Y, Kim N K and Lee Y, Ore extensions of quasi-Baer rings, Commun. Algebra 37 (2009) 2030–2039

    MathSciNet  Article  Google Scholar 

  11. 11.

    Hong C Y, Kim N K and Lee Y, Radicals of skew polynomial rings and skew Laurent polynomial rings, J. Algebra 331 (2011) 428–448

    MathSciNet  Article  Google Scholar 

  12. 12.

    Huh C, Kim H K and Lee Y, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002) 37–52

    MathSciNet  Article  Google Scholar 

  13. 13.

    Jordan D A, Bijective extensions of injective ring endomorphisms, J. Lond. Math. Soc. 25 (1982) 435–448

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kamal A A M, Idempotents in polynomial rings, Acta. Math. Hung. 59 (1992) 355–363

    MathSciNet  Article  Google Scholar 

  15. 15.

    Kim H K, Kim N K and Lee Y, Weakly duo rings with nil Jacobson radical, J. Kor. Math. Soc. 42 (2005) 455–468

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Krempa J, Some examples of reduced rings, Algebra Colloq. 3 (1996) 289–300

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Lam T Y, Leroy A and Matczuk J, Primeness, semiprimeness and prime radical of ore extensions, Commun. Algebra 25 (1997) 2459–2506

    MathSciNet  Article  Google Scholar 

  18. 18.

    Leroy A, Matczuk J and Puczylowski E R, Quasi-duo skew polynomial rings, J. Pure Appl. Algebra 212 (2008) 1951–1959

    MathSciNet  Article  Google Scholar 

  19. 19.

    Leroy A, Matczuk J and Puczyowski E R, A description of quasi-duo \({\mathbb{Z}}\)-graded rings, Commun. Algebra 38 (2010) 1319–1324

    MathSciNet  Article  Google Scholar 

  20. 20.

    Marks G, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002) 311–318

    MathSciNet  Article  Google Scholar 

  21. 21.

    Marks G, Duo rings and Ore extensions, J. Algebra 280 (2004) 463–471

    MathSciNet  Article  Google Scholar 

  22. 22.

    McConnell J C and Robson J C, Noncommutative Noetherian rings (1987) (Chichester: Wiley)

    Google Scholar 

  23. 23.

    Thierrin G, On duo rings, Can. Math. Bull. 3 (1960) 167–172

    MathSciNet  Article  Google Scholar 

  24. 24.

    Yao X, Weakly right duo rings, Pure Appl. Math. Sci. 21 (1985) 19–24

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Yu H-P, On quasi-duo rings, Glasgow Math. J. 37 (1995) 21–31

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for very careful reading of the manuscript and valuable suggestions in depth that improved the paper much. The third-named author was supported by the research fund of Hanbat National University in 2018.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tai Keun Kwak.

Additional information

Communicating Editor: Mrinal Kanti Das

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, C.Y., Kim, H.K., Kim, N.K. et al. Structure of weakly one-sided duo Ore extensions. Proc Math Sci 131, 3 (2021). https://doi.org/10.1007/s12044-020-00600-9

Download citation

Keywords

  • Weakly left (right) duo ring
  • skew polynomial ring
  • ore extension
  • rigid endomorphism
  • commutative ring
  • radical

Mathematics Subject Classification

  • 16D25
  • 16S36
  • 16U80