Abstract
We first make a little survey of the twistor theory for hypercomplex, generalized hypercomplex, quaternionic or generalized quaternionic manifolds. This last theory was initiated by Pantilie (Ann. Mat. Pura. Appl. 193 (2014) 633–641), and allows one to extend the Penrose correspondence from the quaternion to the generalized quaternion case. He showed that any generalized almost quaternionic manifold equipped with an appropriate connection admit a twistor space which comes naturally equipped with a tautological almost generalized complex structure. But he has left open the problem of the integrability. The aim of this article is to give an integrability criterion for this generalized almost complex structure and to give some examples especially in the case of generalized hyperkähler manifolds using the generalized Bismut connection, introduced by Gualtieri (Branes on Poisson varieties, The many facets of geometry: a tribute to Nigel Hitchin (2010) (Oxford: Oxford University Press) pp. 368–395).
This is a preview of subscription content, access via your institution.
References
- 1.
Atiyah M F, Hitchin N J and Singer I M, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425–461
- 2.
Besse A L, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (1987) (Berlin: Springer-Verlag) vol. 10
- 3.
Bredthauer A, Generalized hyperkähler geometry and supersymmetry, Nucl. Phys. B 773 (2007) 172–183
- 4.
Deschamps G, Espaces de twisteurs des structures complexes généralisées, Math. Z. 279 (2015) 703–721
- 5.
Deschamps G, Espaces des twisteurs d’une variété quaternionique Kähler généralisée, Ann. Fac. Sci. de Toulouse, Série 6, Tome 26, no. 3 (2017) 539–568
- 6.
Ezhuthachan B and Ghoshal D, Generalised hyperkähler manifolds in string theory, JEHP 04 (2007) 083
- 7.
Gauduchon P, Hermitian connections and Dirac operators, Bol. U. M. I., ser. VII, XI-B, suppl. 2, pp. 257–289 (1997)
- 8.
Gates S J, Hull C M and Roc̆ek M, Twisted multiplets and new supersymmetric nonlinear -models, Nucl. Phys. Ser. B 248 (1984) 157–186
- 9.
Grantcharov G and Poon Y S, Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000) 19–37
- 10.
Grantcharov G, Papadopoulos G and Poon Y S, Reduction of HKT-structures, J. Math. Phys. 43 (2002) 3766–3782
- 11.
Gordon G S, Papadopoulos G and Stelle K, HKT and OKR geometries on soliton black hole moduli spaces, Nucl. Phys. B508 (1997) 623–658
- 12.
Gualtieri M, Generalized complex geometry, Ann. Math. 174(1) (2011) 75–123
- 13.
Gualtieri M, Branes on Poisson varieties, The Many Facets of Geometry: A Tribute to Nigel Hitchin, edited by O Garcia-Prada, J P Bourguignon and S Salamon (2010) (Oxford: Oxford University Press) pp. 368–395
- 14.
Hitchin N J, Generalized Calabi–Yau manifolds, Quart. J. Math. 54(3) (2003) 281–308
- 15.
Howe P S and Papadopoulos G, Twistor space for hyperkähler manifolds with torsion, Phys. Lett. Ser. B 379 (1996) 80–86
- 16.
Howe P S and Papadopoulos G, Finiteness and anomalies in (4,0) supersymmetric sigma models for HKT manifolds, Nucl. Phys. Ser. B 381 (1992) 360–372
- 17.
Hull C M and Witten E, Supersymmetric sigma models and the heterotic string, Phys. Lett. 160B (1985) 398–402
- 18.
Ivanov S and Papadopoulos G, Vanishing theorems and string backgrounds, Class. Quantum Gravit. 18 (2001) 1089–1110
- 19.
Moraru R and Verbitsky M, Stable bundles on hypercomplex surfaces. Cent. Eur. J. Math. 8 (2010) 379, 327–337
- 20.
O’Neil B, The fundamental equations of a submersion, Michigan Math. J. 13(4) (1966) 459–469
- 21.
Opfermann A and Papadopoulos G, Homogeneous HKT and QKT manifolds (1998) pp. 1–33. arXiv:math-ph9807026
- 22.
Pantilie R, Generalized quaternionic manifolds, Ann. Mat. Pura ed Appl. 193 (2014) 633–641
- 23.
Penrose R, Nonlinear gravitons and curved twistor theory, Gen. Relativ. Gravit. (1976) 31–52
- 24.
Strominger A, Superstrings with torsion, Nuclear Phys. Ser. B 274 (1986) 253–284
- 25.
Salamon S, Quaternionic Kähler manifolds, Invent. Math. 67 (1982) 143–171
- 26.
Salamon S, Differential geometry of quaternionic manifolds, Ann. Sci. Ec. Norm. Sup. 19 (1986) 31–55
- 27.
Severa P and Weinstein A, Poisson geometry with a 3-form background, Prog. Theor. Phys. Suppl. 144 (2001) 145–154
- 28.
Spindel P, Sevrin A, Troost W and Van Proyen A, Complex strcutures on parallelised group manifolds and supersymmetric -models, Phys. Lett. B206 (1988) 71–74
- 29.
Verbitsky M, Hyperkähler manifolds with torsion obtained from hyperholomorphic bundles, Math. Res. Lett. 10 (2003) 501–513
Author information
Affiliations
Corresponding author
Additional information
Communicated by Mj Mahan.
Rights and permissions
About this article
Cite this article
Deschamps, G. Twistor space of a generalized quaternionic manifold. Proc Math Sci 131, 1 (2021). https://doi.org/10.1007/s12044-020-00599-z
Received:
Revised:
Accepted:
Published:
Keywords
- Generalized geometries
- twistor theory
- differential-geometric methods
- hyper-Kähler and quaternionic Kähler geometry
- special geometry
Mathematics Subject Classification
- 53D18
- 32L25
- 70G45
- 53C26