Twistor space of a generalized quaternionic manifold

Abstract

We first make a little survey of the twistor theory for hypercomplex, generalized hypercomplex, quaternionic or generalized quaternionic manifolds. This last theory was initiated by Pantilie (Ann. Mat. Pura. Appl. 193 (2014) 633–641), and allows one to extend the Penrose correspondence from the quaternion to the generalized quaternion case. He showed that any generalized almost quaternionic manifold equipped with an appropriate connection admit a twistor space which comes naturally equipped with a tautological almost generalized complex structure. But he has left open the problem of the integrability. The aim of this article is to give an integrability criterion for this generalized almost complex structure and to give some examples especially in the case of generalized hyperkähler manifolds using the generalized Bismut connection, introduced by Gualtieri (Branes on Poisson varieties, The many facets of geometry: a tribute to Nigel Hitchin (2010) (Oxford: Oxford University Press) pp. 368–395).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Atiyah M F, Hitchin N J and Singer I M, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425–461

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Besse A L, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (1987) (Berlin: Springer-Verlag) vol. 10

  3. 3.

    Bredthauer A, Generalized hyperkähler geometry and supersymmetry, Nucl. Phys. B 773 (2007) 172–183

    MathSciNet  Article  Google Scholar 

  4. 4.

    Deschamps G, Espaces de twisteurs des structures complexes généralisées, Math. Z. 279 (2015) 703–721

    MathSciNet  Article  Google Scholar 

  5. 5.

    Deschamps G, Espaces des twisteurs d’une variété quaternionique Kähler généralisée, Ann. Fac. Sci. de Toulouse, Série 6, Tome 26, no. 3 (2017) 539–568

  6. 6.

    Ezhuthachan B and Ghoshal D, Generalised hyperkähler manifolds in string theory, JEHP 04 (2007) 083

    Google Scholar 

  7. 7.

    Gauduchon P, Hermitian connections and Dirac operators, Bol. U. M. I., ser. VII, XI-B, suppl. 2, pp. 257–289 (1997)

  8. 8.

    Gates S J, Hull C M and Roc̆ek M, Twisted multiplets and new supersymmetric nonlinear -models, Nucl. Phys. Ser. B 248 (1984) 157–186

    Article  Google Scholar 

  9. 9.

    Grantcharov G and Poon Y S, Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000) 19–37

    MathSciNet  Article  Google Scholar 

  10. 10.

    Grantcharov G, Papadopoulos G and Poon Y S, Reduction of HKT-structures, J. Math. Phys. 43 (2002) 3766–3782

    MathSciNet  Article  Google Scholar 

  11. 11.

    Gordon G S, Papadopoulos G and Stelle K, HKT and OKR geometries on soliton black hole moduli spaces, Nucl. Phys. B508 (1997) 623–658

    Article  Google Scholar 

  12. 12.

    Gualtieri M, Generalized complex geometry, Ann. Math. 174(1) (2011) 75–123

    MathSciNet  Article  Google Scholar 

  13. 13.

    Gualtieri M, Branes on Poisson varieties, The Many Facets of Geometry: A Tribute to Nigel Hitchin, edited by O Garcia-Prada, J P Bourguignon and S Salamon (2010) (Oxford: Oxford University Press) pp. 368–395

  14. 14.

    Hitchin N J, Generalized Calabi–Yau manifolds, Quart. J. Math. 54(3) (2003) 281–308

    MathSciNet  Article  Google Scholar 

  15. 15.

    Howe P S and Papadopoulos G, Twistor space for hyperkähler manifolds with torsion, Phys. Lett. Ser. B 379 (1996) 80–86

    Article  Google Scholar 

  16. 16.

    Howe P S and Papadopoulos G, Finiteness and anomalies in (4,0) supersymmetric sigma models for HKT manifolds, Nucl. Phys. Ser. B 381 (1992) 360–372

    Article  Google Scholar 

  17. 17.

    Hull C M and Witten E, Supersymmetric sigma models and the heterotic string, Phys. Lett. 160B (1985) 398–402

    MathSciNet  Article  Google Scholar 

  18. 18.

    Ivanov S and Papadopoulos G, Vanishing theorems and string backgrounds, Class. Quantum Gravit. 18 (2001) 1089–1110

    MathSciNet  Article  Google Scholar 

  19. 19.

    Moraru R and Verbitsky M, Stable bundles on hypercomplex surfaces. Cent. Eur. J. Math. 8 (2010) 379, 327–337

    MathSciNet  Article  Google Scholar 

  20. 20.

    O’Neil B, The fundamental equations of a submersion, Michigan Math. J. 13(4) (1966) 459–469

    MathSciNet  Article  Google Scholar 

  21. 21.

    Opfermann A and Papadopoulos G, Homogeneous HKT and QKT manifolds (1998) pp. 1–33. arXiv:math-ph9807026

  22. 22.

    Pantilie R, Generalized quaternionic manifolds, Ann. Mat. Pura ed Appl. 193 (2014) 633–641

    MathSciNet  Article  Google Scholar 

  23. 23.

    Penrose R, Nonlinear gravitons and curved twistor theory, Gen. Relativ. Gravit. (1976) 31–52

  24. 24.

    Strominger A, Superstrings with torsion, Nuclear Phys. Ser. B 274 (1986) 253–284

    MathSciNet  Article  Google Scholar 

  25. 25.

    Salamon S, Quaternionic Kähler manifolds, Invent. Math. 67 (1982) 143–171

    MathSciNet  Article  Google Scholar 

  26. 26.

    Salamon S, Differential geometry of quaternionic manifolds, Ann. Sci. Ec. Norm. Sup. 19 (1986) 31–55

    MathSciNet  Article  Google Scholar 

  27. 27.

    Severa P and Weinstein A, Poisson geometry with a 3-form background, Prog. Theor. Phys. Suppl. 144 (2001) 145–154

    MathSciNet  Article  Google Scholar 

  28. 28.

    Spindel P, Sevrin A, Troost W and Van Proyen A, Complex strcutures on parallelised group manifolds and supersymmetric -models, Phys. Lett. B206 (1988) 71–74

    MathSciNet  Article  Google Scholar 

  29. 29.

    Verbitsky M, Hyperkähler manifolds with torsion obtained from hyperholomorphic bundles, Math. Res. Lett. 10 (2003) 501–513

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guillaume Deschamps.

Additional information

Communicated by Mj Mahan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deschamps, G. Twistor space of a generalized quaternionic manifold. Proc Math Sci 131, 1 (2021). https://doi.org/10.1007/s12044-020-00599-z

Download citation

Keywords

  • Generalized geometries
  • twistor theory
  • differential-geometric methods
  • hyper-Kähler and quaternionic Kähler geometry
  • special geometry

Mathematics Subject Classification

  • 53D18
  • 32L25
  • 70G45
  • 53C26