Abstract
A submodule N of a module M is called \(\mathcal {D}\)-closed if the socle of M / N is zero. \(\mathcal {D}\)-closed submodules are similar to \(\mathcal {S}\)-closed submodules (a generalization of closed submodules) defined through nonsingular modules. First, we describe the smallest proper class (due to Buchsbaum) containing the class of short exact sequences determined by \(\mathcal {D}\)-closed submodules in terms of that submodule, and show that it coincides with other classes of modules under certain conditions. Second, we study coprojective modules of this class, called edc-flat modules. We give some equivalent conditions for injective modules to be edc-flat for special rings, and for edc-flat modules to be projective (flat) for any ring.
This is a preview of subscription content, access via your institution.
References
- 1.
Buchsbaum D A, A note on homology in categories, Ann. Math.69(1) (1959) 66–74
- 2.
Büyükaşık E and Durğun Y, Absolutely \(s\)-pure modules and neat-flat modules, Comm. Algebra43(2) (2015) 384–399
- 3.
Büyükaşık E and Durğun Y, Neat-flat modules, Comm. Algebra44(1) (2016) 416–428
- 4.
Clark J, Lomp C, Vanaja N and Wisbauer R, Lifting Modules (2006) (Basel: Birkhäuser Verlag)
- 5.
Cohn P M, On the free product of associative rings, Math. Z.71 (1959) 380–398
- 6.
Crivei S and Keskin Tütüncü D, Relatively divisible and relatively flat objects in exact categories, https://arxiv.org/pdf/1810.11637.pdf
- 7.
Crivei S and Şahinkaya S, Modules whose closed submodules with essential socle are direct summands, Taiwanese J. Math.18(4) (2014) 989–1002
- 8.
Dung N V, Huynh D V, Smith P F and Wisbauer R, Extending Modules, Pitman Research Notes in Mathematical Series 313 (1994) (Harlow: Longman Scientific & Technical)
- 9.
Durğun Y and Özdemir S, On \(\cal{S}\)-closed submodules, J. Korean Math. Soc.54(4) (2017) 1281–1299
- 10.
Fuchs L, Neat submodules over integral domains, Period. Math. Hungar.64(2) (2012) 131–143
- 11.
Generalov A I, On weak and \(w\)-high purity in the category of modules, Math. USSR, Sb.34 (1978) 345–356, translated from Russian from Mat. Sb., N. Ser.105(147) 389–402
- 12.
Goodearl K R, Singular torsion and the splitting properties, 124 (1972) (Providence, RI: American Mathematical Society)
- 13.
Goodearl K R, Ring Theory (1976) (New York-Basel: Marcel Dekker Inc.)
- 14.
Honda K, Realism in the theory of abelian groups I, Comment. Math. Univ. St. Paul.5 (1956) 37–75
- 15.
Kara Y and Tercan A, When some complement of a \(z\)-closed submodule is a summand, Comm. Algebra46(7) (2018) 3071–3078
- 16.
Keller B, Chain complexes and stable categories, Manuscripta Math.67 (1990) 379–417
- 17.
Kepka T, On one class of purities, Comment. Math. Univ. Carolinae14 (1973) 139–154
- 18.
Lam T Y, Lectures on modules and rings, Graduate Texts in Mathematics (1999) (New York: Springer-Verlag)
- 19.
Mišina A P and Skornjakov L A, Abelian Groups and Modules, Algebra, Logic and Applications, AMS Translational Series: 2, 107 (1976) (Providence, RI)
- 20.
Nicholson W K and Yousif M F, Quasi-Frobenius rings, Cambridge Tracts in Mathematics 158 (2003) (Cambridge University Press)
- 21.
Quillen D, Higher algebraic K-theory: I, Lecture Notes in Mathematics, vol. 341 (1973) (Berlin: Springer) pp. 85–147
- 22.
Renault G, Étude de certains anneaux liés aux sous-modules compléments d’un \(A\)-module, C. R. Acad. Sci. Paris259 (1964) 4203–4205
- 23.
Rotman J J, An introduction to homological algebra, 2nd edition, Universitext (2009) (New York: Springer)
- 24.
Sklyarenko E G, Relative homological algebra in the category of modules, Usp. Mat. Nauk.33(3) (1978) 85–120
- 25.
Stenström B T, High submodules and purity, Ark. Mat.7 (1967) 173–176
- 26.
Zöschinger H, Schwach-Flache Moduln, Comm. Algebra41(12) (2013) 4393–4407
Acknowledgements
The authors would like to thank the referee for the review of this manuscript.
Author information
Affiliations
Corresponding author
Additional information
Communicating Editor: B Sury
Rights and permissions
About this article
Cite this article
Durǧun, Y., Özdemir, S. On \(\varvec{\mathcal {D}}\)-closed submodules. Proc Math Sci 130, 1 (2020). https://doi.org/10.1007/s12044-019-0537-1
Received:
Accepted:
Published:
Keywords
- Closed submodule
- flat module
- Dickson torsion theory
- semiartinian module
- proper class
Mathematics Subject Classification
- 16D40
- 18G25