A simple method to extract zeros of certain Eisenstein series of small level


This paper provides a simple method to extract the zeros of some weight two Eisenstein series of level N where \(N=2,3,5\) and 7. The method is based on the observation that these Eisenstein series are integral over the graded algebra of modular forms on SL(2, Z) and their zeros are ‘controlled’ by those of \(E_4\) and \(E_6\) in the fundamental domain of \(\Gamma _0(N)\).

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    Apostol T M, Modular Functions and Dirichlet Series in Number Theory (1976) (New York: Springer)

    Google Scholar 

  2. 2.

    Cardoso G Lopes, Curio G and Lust D, Perturbative couplings and modular forms in \(N=2\) string models with a Wilson line, Nucl. Phys.  B491 (1997) 147–183, [arxiv: hep-th/9608154]

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chattopadhyaya A, A simple method to extract the zeros of some Eisenstein series of level \(N\), arxiv: 1707.04502

  4. 4.

    Chattopadhyaya A and David J R, \({N}=2\) heterotic string compactifications on orbifolds of \(K3\times T^2\), JHEP 1701 (2017) 037

    Article  Google Scholar 

  5. 5.

    Chattopadhyaya A and David J R, Gravitational couplings in \({\cal{N}}=2\) string compactifications and Mathieu Moonshine, JHEP 1805 (2018) 211, arxiv: 1712.08791

    MathSciNet  Article  Google Scholar 

  6. 6.

    David J R, Jatkar D P and Sen A, Product representation of Dyon partition function in CHL models, JHEP 06 (2006) 064, [arxiv: hep-th/0602254]

    MathSciNet  Article  Google Scholar 

  7. 7.

    David J R and Sen A, CHL Dyons and Statistical Entropy Function from D1–D5 System, JHEP 11 (2006) 072, [arxiv: hep-th/0605210]

    MathSciNet  Article  Google Scholar 

  8. 8.

    Dijkgraaf R, Verlinde E P and Verlinde H L, Counting dyons in \(N=4\) string theory, Nucl. Phys. B484 (1997) 543–561 [arxiv: hep-th/9607026]

    MathSciNet  Article  Google Scholar 

  9. 9.

    Eguchi T and Hikami K, Note on twisted elliptic genus of \(K3\) surface, Phys. Lett. B694 (2011) 446–455, [arXiv:1008.4924]

    MathSciNet  Article  Google Scholar 

  10. 10.

    Eguchi T, Ooguri H, Taormina A and Yang S-K, Superconformal Algebras and String Compactification on Manifolds with SU(N) Holonomy, Nucl. Phys. B315 (1989) 193

    MathSciNet  Article  Google Scholar 

  11. 11.

    El Basraoui A and Sebbar A, Zeros of the Eisenstein series \(E_2\), Proc. Am. Math. Soc. 138(7) (2010) 2289–2299

    Article  Google Scholar 

  12. 12.

    Gaberdiel M R, Hohenegger S and Volpato R, Mathieu twining characters for K3, JHEP 09 (2010) 058, [arXiv:1006.0221]

    MathSciNet  Article  Google Scholar 

  13. 13.

    Garthwaite S, Long L, Swisher H and Treneer S, Zeros of classical Eisenstein series and recent developments (2011)

  14. 14.

    Garthwaite S, Long L, Swisher H and Treneer S, Zeros of some level 2 Eisenstein series, Proc. Am. Math. Soc. 138 (2010) 467–480

    MathSciNet  Article  Google Scholar 

  15. 15.

    Harvey J A and Moore G W, Algebras, BPS states, and strings, Nucl. Phys. B463 (1996) 315–368, [arxiv: hep-th/9510182]

    MathSciNet  Article  Google Scholar 

  16. 16.

    Rankin F K C and Swinnerton-Dyer H P F, On the zeros of Eisenstein series, Bull. London Math. Soc. 2 (1970) 169–170

    MathSciNet  Article  Google Scholar 

  17. 17.

    Shigezumi J, On the zeros of the Eisenstein series for \(\Gamma _0 ^*(5)\) and \(\Gamma _0 ^*(7)\), Kyushu J. Math. 61(2) (2007) 527–549

    MathSciNet  Article  Google Scholar 

  18. 18.

    Stieberger S, (0, 2) heterotic gauge couplings and their \(M\) theory origin, Nucl. Phys.B541  (1999) 109–144, [arxiv: hep-th/9807124]

    MathSciNet  Article  Google Scholar 

  19. 19.

    Wood R and Young M P, Zeros of the weight two Eisenstein series, J. Number Theory 143 (2014) 320–333

    MathSciNet  Article  Google Scholar 

Download references


The author would like to thank Council of Scientific and Industrial Research (CSIR) for the funding. She thanks the anonymous referee for suggestions and comments. This work would not have been possible without the help and guidance of Prof. Justin R David, Department of Centre for High Energy Physics, Indian Institute of Science, Bangalore and Prof. Soumya Das, Department of Mathematics, Indian Institute of Science, Bangalore. The author also thanks Ritwik Pal and Pramath Anamby, Department of Mathematics, Indian Institute of Science, Bangalore for useful discussions.

Author information



Corresponding author

Correspondence to Aradhita Chattopadhyaya.

Additional information

Communicating Editor: A Raghuram

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyaya, A. A simple method to extract zeros of certain Eisenstein series of small level. Proc Math Sci 130, 6 (2020). https://doi.org/10.1007/s12044-019-0530-8

Download citation


  • Zeros of Eisenstein series
  • zeros of modular forms of \(\Gamma _0(N)\)

2000 Mathematics Subject Classification

  • 11F11
  • 11F03