Advertisement

Uniformly locally univalent harmonic mappings

Article

Abstract

The primary aim of this paper is to characterize the uniformly locally univalent harmonic mappings in the unit disk. Then, we obtain sharp distortion, growth and covering theorems for one parameter family \({{\mathcal {B}}}_{H}(\lambda )\) of uniformly locally univalent harmonic mappings. Finally, we show that the subclass of k-quasiconformal harmonic mappings in \({{\mathcal {B}}}_{H}(\lambda )\) and the class \({{\mathcal {B}}}_{H}(\lambda )\) are contained in the Hardy space of a specific exponent depending on \(\lambda \), respectively, and we also discuss the growth of coefficients for harmonic mappings in \({{\mathcal {B}}}_{H}(\lambda )\).

Keywords

Harmonic mapping pre-Schwarzian derivatives uniformly locally univalence growth estimate coefficient estimate harmonic Bloch space Hardy space 

2010 Mathematics Subject Classification

Primary: 30C65 30C45 Secondary: 30C20 30C50 30C80 

Notes

Acknowledgements

The works of Mrs. Jinjing Qiao was supported by National Natural Science Foundation of China (No. 11501159), NSF of Hebei Science Foundation for Young Scientists (No. A2018201033) and was partially supported by INSA JRD-TATA Fellowship of the Centre for International Co-operation in Science (CICS). The third author (XW) was partly supported by NSFs of China (Nos. 11571216, 11671127 and 11720101003) and STU SRFT (No. 130-09400243).

References

  1. 1.
    Abu-Muhanna Y, Bloch, BMO and harmonic univalent functions, BMO and harmonic univalent functions, Complex Var. Theory Appl., 31 (1996) 271–279MathSciNetMATHGoogle Scholar
  2. 2.
    Abu-Muhanna Y, Ali R M and Ponnusamy S, The spherical metric and harmonic univalent maps, Monatsh. Math., (2018) 14,  https://doi.org/10.1007/s00605-018-1160.4
  3. 3.
    Anderson J M, On Bloch functions and normal functions, J. Reine Angew. Math., 270 (1974) 12–37MathSciNetMATHGoogle Scholar
  4. 4.
    Becker J, Löwnersche Differentialgleichung and quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math., 255 (1972) 23–43MathSciNetMATHGoogle Scholar
  5. 5.
    Becker J and Pommerenke Ch., Schlichtheitskriterien und Jordangebriete, J. Reine Angew. Math., 354 (1984) 74–94MathSciNetMATHGoogle Scholar
  6. 6.
    Carleson L and Jones P W, On coefficient problems for univalent functions and conformal dimension, Duke Math. J., 66 (1992) 169–206MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen Sh., Ponnusamy S, Vuorinen M and Wang X, Lipschitz spaces and bounded mean oscillation of harmonic mappings, Bull. Aust. Math. Soc., 88(1) (2013) 143–157MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen Sh., Bloch constant and Landau’s theorem for planar \(p\)-harmonic mappings, J. Math. Anal. Appl., 373(1) (2011) 102–110MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen Sh., Landau–Bloch constants for functions in \(\alpha \)-Bloch spaces and Hardy spaces, Complex Anal. Oper. Theory, 6(5) (2012) 1025–1036MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Clunie J G and Sheil-Small T, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I., 9 (1984) 3–25MathSciNetMATHGoogle Scholar
  11. 11.
    Colonna F, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J., 38 (1989) 829–840MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Colonna F, Bloch and normal functions and their relation, Rend. Circ. Mat. Palermo II, 38 (1989) 161–180MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Duren P, Harmonic mappings in the plane (2004) (New York: Cambridge University Press)CrossRefMATHGoogle Scholar
  14. 14.
    Kim Y C, Some inequalities for uniformly locally univalent functions on the unit disk, Math. Inequal. Appl., 10 (2007) 805–809MathSciNetMATHGoogle Scholar
  15. 15.
    Kim Y C and Sugawa T, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mt. J. Math., 32(1) (2002) 179–200MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kim Y C and Sugawa T, Uniformly locally univalent functions and Hardy spaces, J. Math. Anal. Appl., 353 (2009) 61–67MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lewy H, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Am. Math. Soc., 42 (1936) 689–692MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Makarov N G and Pommerenke Ch. (1997) On coefficients, boundary size and Hölder domains. Ann. Acad. Sci. Fenn. Ser. A I Math., 22, 305–312MATHGoogle Scholar
  19. 19.
    Noshiro K, On the star-shaped mapping by an analytic function, Proc. Imp. Acad. Jpn., 8 (1932) 275–277MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pommerenke Ch., Uniformly perfect sets and the Poincaré metric, Arch. Math. (Basel), 32(2) (1979) 192–199MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Pommerenke Ch., Boundary behaviour of conformal maps (1992) (Berlin: Springer)CrossRefMATHGoogle Scholar
  22. 22.
    Ponnusamy S and Rasila A, Planar harmonic and quasiregular mappings, Topics in Modern Function Theory: Chapter in CMFT, RMS-Lecture Notes Series No. 19 (2013) pp. 267–333Google Scholar
  23. 23.
    Sugawa T, Various domain constants related to uniform perfectness, Complex Var. Theory Appl., 36(4) (1998) 311–345MathSciNetMATHGoogle Scholar
  24. 24.
    Yamashita S, Almost locally univalent functions, Monatsh. Math., 81 (1976) 235–240MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Saminathan Ponnusamy
    • 1
  • Jinjing Qiao
    • 2
  • Xiantao Wang
    • 3
  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of MathematicsHebei UniversityBaodingPeople’s Republic of China
  3. 3.Department of MathematicsShantou UniversityShantouPeople’s Republic of China

Personalised recommendations