New wave patterns to the doubly dispersive equation in nonlinear dynamic elasticity

Abstract

This study aims to obtain travelling wave solutions of the doubly dispersive equation in nonlinear dynamic elasticity by the sine-Gordon expansion method. We give physical explanation of the presented solutions under suitable parameters via the 3D, 2D and contour simulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    V I Karpman, Non-linear waves in dispersive media: International series of monographs in natural philosophy (Elsevier, 2016) Vol. 71, pp. 15–18

  2. 2.

    M B Peirotti, M D Giavedoni and J A Deiber, Int. J. Heat Mass Transf. 30(12), 2571 (1987)

    Google Scholar 

  3. 3.

    K E Lonngren, Observation of solitons on nonlinear dispersive transmission lines, in: Solitons in action (Academic Press, New York, 1978) pp. 127–152

  4. 4.

    G Schneider and C W Eugene, Physica D152–153, 384 (2001)

    ADS  Google Scholar 

  5. 5.

    A M Samsonov, Sov. Phys. Dokl. 29, 586 (1984)

    ADS  Google Scholar 

  6. 6.

    K N Moutsopoulos, Transp. Porous Media 85(3), 919 (2010)

    MathSciNet  Google Scholar 

  7. 7.

    P K Tolikas, E G Sidiropoulos and C D Tzimopoulos, Water Resour. Res. 20(1), 24 (1984)

    ADS  Google Scholar 

  8. 8.

    L A Ostrovsky and A M Sutin, Prildad, Matem, i Mekhan. 41(3), 531 (1977) (in Russian)

    Google Scholar 

  9. 9.

    F E Garbuzov, K R Khusnutdinova and I V Semenova, Wave Motion 88: 129 (2019), https://doi.org/10.1016/j.wavemoti.2019.02.004

    MathSciNet  Article  Google Scholar 

  10. 10.

    A M Samsonov and A V Porubov, Tech. Phys. Lett. 19(6), 365 (1993)

    ADS  Google Scholar 

  11. 11.

    A M Samsonov, Strain solitons in solids and how to construct them (Chapman & Hall/CRC, Boca Raton, 2001)

    Google Scholar 

  12. 12.

    A V Porubov, Amplification of nonlinear strain waves in solids (World Scientific, Singapore, 2003)

    Google Scholar 

  13. 13.

    V I Erofeev, V V Kazhaev and N P Semerikova, Waves in rods: Dispersion, dissipation, nonlinearity (Fizmatlit, Moscow, 2002) (in Russian)

    Google Scholar 

  14. 14.

    M Matsukawa and S Watanabe, J. Phys. Soc. Jpn. 57, 2936 (1988)

    ADS  Google Scholar 

  15. 15.

    C Cattani, T A Sulaiman, H M Baskonus and H Bulut, Eur. Phys. J. Plus 133, 228 (2018)

    Google Scholar 

  16. 16.

    A M Wazwaz, Ocean Eng. 53, 1 (2012)

    MathSciNet  Google Scholar 

  17. 17.

    A M Samsonov, Sov. Phys.-Dokl. 4, 298 (1988)

    ADS  Google Scholar 

  18. 18.

    A M Samsonov, On some exact travelling wave solutions for nonlinear hyperbolic equation, in: Nonlinear waves and dissipative effects, Pitman Research Notes in Mathematics Series edited by D Fusco and A Jeffrey (Longman Scientific Technical, Longman, 1993) Vol. 227, pp. 123–132

  19. 19.

    J Yu, F Li and S Lianbing, Appl. Math.8, 712 (2017), https://doi.org/10.4236/am.2017.85056

    Article  Google Scholar 

  20. 20.

    R Silambarasan, H M Baskonus and H Bulut, Eur. Phys. J. Plus 134, 125 (2019)

    Google Scholar 

  21. 21.

    M T Darvishi, M Najafi and A M Wazwaz, Ocean Eng. 130, 228 (2017)

    Google Scholar 

  22. 22.

    A Filiz, M Ekici and A Sonmezoglu, Sci. World J.2014, 534063 (2014)

    Google Scholar 

  23. 23.

    M S Islam, M A Akbar and K Khan, Cogent Math. 4(1), 1378530 (2017)

    Google Scholar 

  24. 24.

    Z Yan, Chaos Solitons Fractals 16, 291 (2003)

    ADS  MathSciNet  Google Scholar 

  25. 25.

    A R Seadawy, D Kumar and A K Chakrabarty, Eur. Phys. J. Plus 133, 182 (2018)

    Google Scholar 

  26. 26.

    X Xian-Lin and T Jia-Shi, Commun. Theor. Phys. 50, 1047 (2008)

    ADS  Google Scholar 

  27. 27.

    H Bulut, T Aktürk and G Yel, Turk. J. Math. Comput. Sci. 10, 202 (2018)

    Google Scholar 

  28. 28.

    Y He, S Li and Y Long. Int. Math. Forum 7(4), 175 (2012)

    MathSciNet  Google Scholar 

  29. 29.

    T A Sulaiman, H Bulut, A Yokus and H M Baskonus, Indian J. Phys. 93(5), 647 (2019)

    ADS  Google Scholar 

  30. 30.

    A Kilicman and R Silambarasan, Symmetry 10, 527 (2018)

    Google Scholar 

  31. 31.

    D Kumar, M T Darvishi and A K Joardar, Opt. Quantum Electron. 50, 128 (2018)

    Google Scholar 

  32. 32.

    K Hosseini, P Mayeli and D Kumar, J. Mod. Opt. 65, 361 (2018)

    ADS  Google Scholar 

  33. 33.

    M A Habib, H M Shahadat Ali, M M Miah and M A Akbar, AIMS Math. 4(3): 896 (2019)

    MathSciNet  Google Scholar 

  34. 34.

    M Foroutan, J Manafian and A Ranjbaran, Nonlinear Dyn. 92, 2077 (2018)

    Google Scholar 

  35. 35.

    L Li, C Duan and F Yu, Phys. Lett. A383(14), 1578 (2019)

    ADS  MathSciNet  Google Scholar 

  36. 36.

    R Cao, Q Zhao and L Gao, Adv. Differ. Equ. 364, 156 (2019)

    Google Scholar 

  37. 37.

    G Yel, H M Baskonus and H Bulut, Indian J. Phys. 93(8), 1031 (2019)

    ADS  Google Scholar 

  38. 38.

    H M Baskonus, AIP Conf. Proc. 1798, 020018 (2017)

    Google Scholar 

  39. 39.

    E Tala-Tebue and E M E Zayed, Eur. Phys. J. Plus 133, 314 (2018)

    Google Scholar 

  40. 40.

    E M E Zayed and K A E Alurrfi, Chaos Solitons Fractals 78, 148 (2015)

    ADS  MathSciNet  Google Scholar 

  41. 41.

    M K Elboree, Comput. Math. Appl. 62, 4402 (2011)

    MathSciNet  Google Scholar 

  42. 42.

    C Yan, Phys. Lett. A 22(4), 77 (1996)

    ADS  Google Scholar 

  43. 43.

    Z Yan and H Zhang, Phys. Lett. A 252, 291 (1999)

    ADS  MathSciNet  Google Scholar 

  44. 44.

    H Bulut, T A Sulaiman, H M Baskonus and A A Sandulyak, Optik 135, 327 (2017)

    ADS  Google Scholar 

  45. 45.

    G Yel, H M Baskonus and H Bulut, Opt. Quantum Electron. 49, 285 (2017)

    Google Scholar 

  46. 46.

    H M Baskonus, H Bulut and T A Sulaiman, Appl. Math. Nonlinear Sci. 4, 141 (2019)

    MathSciNet  Google Scholar 

  47. 47.

    S B Yamgoué, G R Deffo and F B Pelap, Eur. Phys. J. Plus 134(8), 380 (2019)

    Google Scholar 

  48. 48.

    D Kumar, K Hosseini and F Samadani, Optik149, 439 (2017)

    ADS  Google Scholar 

  49. 49.

    N S Manton and P M Sutcliffe, Topological solitons (Cambridge University Press, Cambridge, UK, 2004)

    Google Scholar 

  50. 50.

    A M Samsonov and I Semenova, Tech. Phys. Lett. 37(6), 500 (2011)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gulnur Yel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yel, G. New wave patterns to the doubly dispersive equation in nonlinear dynamic elasticity. Pramana - J Phys 94, 79 (2020). https://doi.org/10.1007/s12043-020-1941-x

Download citation

Keywords

  • The sine-Gordon expansion method
  • the doubly dispersive equation
  • travelling wave solutions

PACS Nos 

  • 02.30.Jr
  • 44.05.+e
  • 02.30.Rz
  • 62.20.de