Features of Jeffrey fluid flow with Hall current: A spectral simulation

Abstract

The Hall current in MHD flow stimulates substantial interest of researchers because of its wide role in many geophysical, astrophysical and fluid engineering situations (construction of turbines, Hall accelerator and centrifugal machines). Motivated by such wide applications, the present work reports the influence of Hall current and thermal radiation on the three-dimensional Jeffrey fluid flow over a stretching surface. In order to achieve similar solution of the governing equations, transformation technique is adopted. The mathematical model is numerically solved by using a spectral technique, namely successive linearisation method (SLM). To explore the feature of various factors, e.g. Hall current and thermal radiation, the variation of flow dominant parameters on the obtained profiles are carefully elucidated with graphs. It can be sensed from the obtained graphs that primary and secondary velocity increase, but, temperature reduces with the enhancement in Hall current. Radiation parameter has the tendency to increase the temperature of the fluid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    L J Crane, Z. Angew. Math. Physik21, 645 (1970)

    Google Scholar 

  2. 2.

    H Andersson, Acta Mech.95, 227 (1992)

    MathSciNet  Article  Google Scholar 

  3. 3.

    E M Elbashbeshy, J. Phys. D31, 1951 (1951)

    ADS  Article  Google Scholar 

  4. 4.

    A Chakrabarti and A Gupta, Quart. Appl. Math.37, 73 (1979)

    Article  Google Scholar 

  5. 5.

    A Raptis and C Perdikis, Int. J. Non-Linear Mech.41, 527 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    T Hayat, M I Khan, M Waqas, A Alsaedi and T Yasmeen, Chin. J. Chem. Eng.25, 257 (2017)

    Article  Google Scholar 

  7. 7.

    B Kumar, G S Seth and R Nandkeolyar, Pramana – J. Phys.93: 74 (2019)

    ADS  Article  Google Scholar 

  8. 8.

    B Kumar, G S Seth and R Nandkeolyar, Proc. Inst. Mech. Eng. E, https://doi.org/10.1177/0954408919878984 (2019)

  9. 9.

    S Ghosh and S Mukhopadhyay, Pramana – J. Phys.92: 93 (2019)

    ADS  Article  Google Scholar 

  10. 10.

    K Ayub, M Y Khan, Q M Ul-Hassan, M Ashraf and M Shakeel, Pramana – J. Phys.91: 83 (2018)

    ADS  Article  Google Scholar 

  11. 11.

    B Mahanthesh, I L Animasaun, M Rahimi-Gorji and I M Alarifi, Physica A535, 122471 (2019)

    MathSciNet  Article  Google Scholar 

  12. 12.

    S Shehzad, A Alsaedi and T Hayat, Int. J. Heat Mass Transf.55, 3971 (2012)

    Article  Google Scholar 

  13. 13.

    M Turkyilmazoglu and I Pop, Int. J. Heat Mass Transf.57, 82 (2013)

    Article  Google Scholar 

  14. 14.

    M Qasim, Alex. Eng. J.52, 571 (2013)

    Article  Google Scholar 

  15. 15.

    M Farooq, N Gull, A Alsaedi and T Hayat, J. Mech.31, 319 (2015)

    Article  Google Scholar 

  16. 16.

    T Hayat, M Waqas, S A Shehzad and A Alsaedi, J. Hydrol. Hydromech.63, 311 (2015)

    Article  Google Scholar 

  17. 17.

    T Hayat, S Qayyum, M Imtiaz and A Alsaedi, PLOS One, 11, e0148662 (2016)

    Article  Google Scholar 

  18. 18.

    S Rahman, R Ellahi, S Nadeem and Q M Z Zia, J. Mol. Liq.218, 484 (2016)

    Article  Google Scholar 

  19. 19.

    K Ahmad and A Ishak, Propuls. Power Res.6, 269 (2017)

    Article  Google Scholar 

  20. 20.

    A Raptis, C Perdikis and H S Takhar, Appl. Math. Comput.153, 645 (2004)

    MathSciNet  Google Scholar 

  21. 21.

    T Hayat, Z Abbas, M Sajid and S Asghar, Int. J. Heat Mass Transf.50, 931 (2007)

    Article  Google Scholar 

  22. 22.

    K Das, N Acharya and P K Kundu, Alex. Eng. J.54, 815 (2015)

    Article  Google Scholar 

  23. 23.

    B Kumar, G S Seth and R Nandkeolyar, Phys. Scr.94, 115211 (2019)

    ADS  Article  Google Scholar 

  24. 24.

    B Kumar, G S Seth and R Nandkeolyar, Int. J. Therm. Sci.146, 106101 (2019)

    Article  Google Scholar 

  25. 25.

    B Mahanthesh, B J Gireesha and R S Gorla, J. Nigerian Math. Soc.35, 178 (2016)

    MathSciNet  Article  Google Scholar 

  26. 26.

    S Shehzad, Z Abdullah, A Alsaedi, F Abbasi and T Hayat, J. Magn. Magn. Mater.397, 108 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    B Mahanthesh, B J Gireesha, S A Shehzad, A Rauf and P S Kumar, Physica B537, 98 (2018)

    ADS  Article  Google Scholar 

  28. 28.

    B Mahanthesh, B J Gireesha and I L Animasaun, J. Nanofluids7, 833 (2018)

    Article  Google Scholar 

  29. 29.

    H Sato, J. Phys. Soc. Jpn.16, 1427 (1961)

    ADS  Article  Google Scholar 

  30. 30.

    M Katagiri, J. Phys. Soc. Jpn.27, 1051 (1969)

    ADS  Article  Google Scholar 

  31. 31.

    I Pop and V Soundalgekar, Acta Mech.20, 315 (1974)

    ADS  Article  Google Scholar 

  32. 32.

    M G Reddy, Ain Shams Eng. J.5, 169 (2014)

    Article  Google Scholar 

  33. 33.

    B J Gireesha, B Mahanthesh, R S R Gorla and P T Manjunatha, Heat Mass Transf.52, 897 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    B Mahanthesh and I L Animasaun, Multidiscip. Model. Mater. Struct.15, 758 (2019)

    Article  Google Scholar 

  35. 35.

    G Sreedevi, R R Rao, D P Rao and A Chamkha, Ain Shams Eng. J.7, 383 (2016)

    Article  Google Scholar 

  36. 36.

    Z Shah, S Islam, T Gul, E Bonyah and M A Khan, Results Phys.9, 1201 (2018)

    ADS  Article  Google Scholar 

  37. 37.

    Z Makukula, P Sibanda and S Motsa, Bound. Value Probl.2010, 471793 (2010)

    Article  Google Scholar 

  38. 38.

    S S Motsa and P Sibanda, Comput. Math. Appl.63, 1197 (2012).

    MathSciNet  Article  Google Scholar 

  39. 39.

    S A Shehzad, T Hayat, M S Alhuthali and S Asghar, J Cent. South Univ.21, 1428 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, R Nandkeolyar, thankfully acknowledges the grant received from Science and Engineering Research Board, Department of Science and Technology, Government of India (File No.: ECR/2017/000118/PMS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to R Nandkeolyar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinha, V., Kumar, B., Seth, G.S. et al. Features of Jeffrey fluid flow with Hall current: A spectral simulation. Pramana - J Phys 94, 64 (2020). https://doi.org/10.1007/s12043-020-1940-y

Download citation

Keywords

  • Hall current
  • Jeffrey fluid
  • thermal radiation
  • successive linearisation method
  • stretching sheet

PACS Nos

  • 47.85.ld
  • 47.65.–d
  • 47.55.Ca
  • 47.55.P–