Systematics of multinucleon transfer in heavy-ion reactions

Abstract

One-neutron pickup reactions for 52 projectile–target combinations were analysed using a systematics between transfer cross-sections and ground-state Q-values. One-neutron pickup transfer shows a good correlation between reduced transfer cross-sections and ground-state Q-values (\(Q_{gg}\)) if one separate the systems into two groups based on their \(Z_{p}Z_{t}\) product. Also, similar kind of systematics is applied to 2n, 3n and 4n pickup transfer and a good correlation is obtained between reduced transfer cross-sections and \(Q_{gg}\) values, where no \(Z_{p}Z_{t}\) dependence is seen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A M Stefanini et al, Nucl. Phys. A 701, 217 (2002)

    Google Scholar 

  2. 2.

    A Cunsolo, F Cappuzzello, A Foti, A Lazzaro, A L Melita, C Nociforo, V Shchepunov and J S Winfield, Nucl. Instrum. Methods Phys. Res. 481, 48 (2002)

    ADS  Google Scholar 

  3. 3.

    H Savajols, Nucl. Phys. A 654, 1027c (1999)

    ADS  Google Scholar 

  4. 4.

    N Madhavan et al, Pramana – J. Phys. 75, 317 (2010)

    ADS  Google Scholar 

  5. 5.

    A K Sinha, N Madhavan, J J Das, P Sugathan, D O Kataria, A P Patro and G K Mehta, Nucl. Instrum. Methods Phys. Res. 339, 543 (1994)

    ADS  Google Scholar 

  6. 6.

    K E Rehm, Annu. Rev. Nucl. Part. S 41, 429 (1991)

    ADS  Google Scholar 

  7. 7.

    K E Rehm, D G Kovar, W Kutschera, M Paul, G Stephans and J L Yntema, Phys. Rev. Lett. 51, 1426 (1983)

    ADS  Google Scholar 

  8. 8.

    K E Rehm, F L H Wolfs, A M van den Berg and W Henning, Phys. Rev. Lett. 55, 280 (1985)

    ADS  Google Scholar 

  9. 9.

    L Corradi, G Pollarolo and S Szilner, J. Phys. G 36, 113101 (2009)

    ADS  Google Scholar 

  10. 10.

    C L Jiang, K E Rehm, H Esbensen, D J Blumenthal, B Crowell, J Gehring, B Glagola, J P Schiffer and A H Wuosmaa, Phys. Rev. C 57, 2393 (1998)

    ADS  Google Scholar 

  11. 11.

    S Szilner et al, Phys. Rev. C 71, 044610 (2005)

    ADS  Google Scholar 

  12. 12.

    W von Oertzen, H G Bohlen, B Gebauer, R Künkel, F Pühlhofer and D Scühll, Z. Phys. A 326, 463 (1987)

    ADS  Google Scholar 

  13. 13.

    W von Oertzen and A Vitturi, Rep. Prog. Phys. 64, 1247 (2001)

    ADS  Google Scholar 

  14. 14.

    C Y Wu, W von Oertzen, D Cline and M W Guidry, Annu. Rev. Nucl. Part S 40, 285 (1990)

    ADS  Google Scholar 

  15. 15.

    I Peter et al, Eur. Phys. J. A 16, 509 (2003)

    ADS  Google Scholar 

  16. 16.

    P K Sahu, R K Choudhury, D C Biswas and B K Nayak, Phys. Rev. C 64, 014609 (2001)

    ADS  Google Scholar 

  17. 17.

    V Jha, B J Roy, A Chatterjee and H Machner, Eur. Phys. J. A 19, 347 (2004)

    ADS  Google Scholar 

  18. 18.

    D Montanari et al, Phys. Rev. Lett. 113, 052501 (2014)

    ADS  Google Scholar 

  19. 19.

    W von Oertzen et al, Eur. Phys. J. A 20, 153 (2003)

    ADS  Google Scholar 

  20. 20.

    B B Back, H Esbensen, C L Jiang and K E Rehm, Rev. Mod. Phys. 86, 317 (2014)

    ADS  Google Scholar 

  21. 21.

    Khushboo et al, Phys. Rev. C 96, 014614 (2017)

    ADS  Google Scholar 

  22. 22.

    G L Zhang, X X Liu and C J Lin, Phys. Rev. C 89, 054602 (2014)

    ADS  Google Scholar 

  23. 23.

    M Beckerman, M Salomaa, A Sperduto, H Enge, J Ball, A DiRienzo, S Gazes, Y Chen, J D Molitoris and M Nai-feng, Phys. Rev. Lett. 45, 1472 (1980)

    ADS  Google Scholar 

  24. 24.

    H Timmers, D Ackermann, S Beghini, L Corradi, J H He, G Montagnoli, F Scarlassara, A Stefanini and N Rowley, Nucl. Phys. A 633, 421 (1998)

    ADS  Google Scholar 

  25. 25.

    V V Sargsyan, G G Adamian, N V Antonenko, W Scheid and H Q Zhang, Phys. Rev. C 91, 014613 (2015)

    ADS  Google Scholar 

  26. 26.

    V I Zagrebaev, Phys. Rev. C 67, 061601 (2003)

    ADS  Google Scholar 

  27. 27.

    H Q Zhang et al, Phys. Rev. C 82, 054609 (2010)

    ADS  Google Scholar 

  28. 28.

    V V Sargsyan, G G Adamian, N V Antonenko, W Scheid and H Q Zhang, Phys. Rev. C 84, 064614 (2011)

    ADS  Google Scholar 

  29. 29.

    T Welsh et al, Phys. Lett. B 771, 119 (2017)

    ADS  Google Scholar 

  30. 30.

    J S Barrett et al, Phys. Rev. C 91, 064615 (2015)

    ADS  Google Scholar 

  31. 31.

    F Galtarossa et al, Phys. Rev. C 97, 054606 (2018)

    ADS  Google Scholar 

  32. 32.

    T Mijatović et al, Phys. Rev. C 94, 064616 (2016)

    ADS  Google Scholar 

  33. 33.

    Y X Watanabe et al, Phys. Rev. Lett. 115, 172503 (2015)

    ADS  Google Scholar 

  34. 34.

    O Beliuskina et al, Eur. Phys. J. A 50, 161 (2014)

    ADS  Google Scholar 

  35. 35.

    V F Comas, S Heinz, S Hofmann, D Ackermann, J A Heredia, F P Heßberger, J Khuyagbaatar, B Kindler, B Lommel and R Mann, Eur. Phys. J. A 49, 112 (2013)

    ADS  Google Scholar 

  36. 36.

    E M Kozulin et al, Phys. Rev. C 86, 044611 (2012)

    ADS  Google Scholar 

  37. 37.

    W Królas et al, Nucl. Phys. A 832, 170 (2010)

    ADS  Google Scholar 

  38. 38.

    A Vogt et al, Phys. Rev. C 92, 024619 (2015)

    ADS  Google Scholar 

  39. 39.

    M V Pajtler et al, Nucl. Phys. A 941, 273 (2015)

    ADS  Google Scholar 

  40. 40.

    V Zagrebaev and W Greiner, Phys. Rev. Lett. 101, 122701 (2008)

    ADS  Google Scholar 

  41. 41.

    V Zagrebaev and W Greiner, J. Phys. G 34, 1 (2007)

    ADS  Google Scholar 

  42. 42.

    V V Saiko and A V Karpov, Phys. Rev. C 99, 014613 (2019)

    ADS  Google Scholar 

  43. 43.

    http://nrv.jinr.ru/nrv/webnrv/grazing/

  44. 44.

    A Winther, Nucl. Phys. A 572, 191 (1994)

    ADS  Google Scholar 

  45. 45.

    R Yanez and W Loveland, Phys. Rev. C 91, 044608 (2015)

    ADS  Google Scholar 

  46. 46.

    G G Adamian, N V Antonenko, V V Sargsyan and W Scheid, Phys. Rev. C 81, 057602 (2010)

    ADS  Google Scholar 

  47. 47.

    G G Adamian, N V Antonenko, V V Sargsyan and W Scheid, Phys. Rev. C 81, 024604 (2010)

    ADS  Google Scholar 

  48. 48.

    G G Adamian, N V Antonenko and D Lacroix, Phys. Rev. C 82, 064611 (2010)

    ADS  Google Scholar 

  49. 49.

    C Golabek and C Simenel, Phys. Rev. Lett. 103, 042701 (2009)

    ADS  Google Scholar 

  50. 50.

    C Simenel, Phys. Rev. Lett. 105, 192701 (2010)

    ADS  Google Scholar 

  51. 51.

    C Simenel, Phys. Rev. Lett. 106, 112502 (2011)

    ADS  Google Scholar 

  52. 52.

    K Sekizawa and K Yabana, Phys. Rev. C 88, 014614 (2013)

    ADS  Google Scholar 

  53. 53.

    K Sekizawa and K Yabana, Phys. Rev. C 93, 054616 (2016)

    ADS  Google Scholar 

  54. 54.

    J Tian, X Wu, K Zhao, Y Zhang and Z Li, Phys. Rev. C 77, 064603 (2008)

    ADS  Google Scholar 

  55. 55.

    K Zhao, Z Li, X Wu and Y Zhang, Phys. Rev. C 88, 044605 (2013)

    ADS  Google Scholar 

  56. 56.

    K Zhao, Z Li, N Wang, Y Zhang, Q Li, Y Wang and X Wu, Phys. Rev. C 92, 024613 (2015)

    ADS  Google Scholar 

  57. 57.

    H G Bohlen, K D Hildenbrand, A Gobbi and K I Kubo, Z. Phys. A 273, 211 (1975)

    ADS  Google Scholar 

  58. 58.

    H Spieler, H J Körner, K E Rehm, M Richter and H P Rother, Z. Phys. A 278, 241 (1976)

    ADS  Google Scholar 

  59. 59.

    C Toepffer, Z. Phys. A 253, 78 (1972)

    Google Scholar 

  60. 60.

    K Alder and D Trautmann, Nucl. Phys. A 178, 60 (1971)

    ADS  Google Scholar 

  61. 61.

    A G Artukh, V V Avdeichikov, J Erö, G F  Gridnev, V L Mikheev, V V Volkov and J Wilczynski, Nucl. Phys. A 160, 511 (1971)

    ADS  Google Scholar 

  62. 62.

    A Y Abul-Magd, K El-Abed and M El-Nadi, Phys. Lett. B 39, 166 (1972)

    ADS  Google Scholar 

  63. 63.

    H Oeschler, G B Hagemann, M L Halbert and B Herskind, Nucl. Phys. A 266, 262 (1976)

    ADS  Google Scholar 

  64. 64.

    A M van den Berg, K E Rehm, D G Kovar, W Kutschera and G S F Stephans, Phys. Lett. B 194, 334 (1987)

    ADS  Google Scholar 

  65. 65.

    K E Rehm, C Beck, A van den Berg, D G Kovar, L L Lee, W C Ma, F Videbaek and T F Wang, Phys. Rev. C 42, 2497 (1990)

    ADS  Google Scholar 

  66. 66.

    W Reisdorf, J V Kratz, R Bellwied, W Brüchle, H Keller, K Lützenkirchen, M Schädel, K Sümmerer and G Wirth, Z. Phys. A 342, 411 (1992)

    ADS  Google Scholar 

  67. 67.

    A C Berriman, D J Hinde, M Dasgupta, C R Morton, R D Butt and J O Newton, Nature 413, 144 (2001)

    ADS  Google Scholar 

  68. 68.

    B B Back, Phys. Rev. C 31, 2104 (1985)

    ADS  Google Scholar 

  69. 69.

    W J Swiatecki, Phys. Scr. 24, 113 (1981)

    ADS  Google Scholar 

  70. 70.

    S Bjørnholm and W Swiatecki, Nucl. Phys. A 391, 471 (1982)

    ADS  Google Scholar 

  71. 71.

    P Möller and A J Sierk, Nature 422, 485 (2003)

    ADS  Google Scholar 

  72. 72.

    R G Thomas, Pramana – J. Phys. 85, 303 (2015)

    ADS  Google Scholar 

  73. 73.

    T K Ghosh et al, Pramana – J. Phys. 85, 291 (2015)

    ADS  Google Scholar 

  74. 74.

    R Rafiei, R G Thomas, D J Hinde, M Dasgupta, C R Morton, L R Gasques, M L Brown and M D Rodriguez, Phys. Rev. C 77, 024606 (2008)

    ADS  Google Scholar 

  75. 75.

    J P Blocki, H Feldmeier and W J Swiatecki, Nucl. Phys. A 459, 145 (1986)

    ADS  Google Scholar 

  76. 76.

    National nuclear data center, https://www.nndc.bnl.gov

  77. 77.

    Y Sugiyama, Y Tomita, H Ikezoe, K Ideno, N Shikazono, N Kato, H Fujita, T Sugimitsu and S Kubono, Phys. Lett. B 176, 302 (1986)

    ADS  Google Scholar 

  78. 78.

    L Corradi et al, Z. Phys. A 335, 55 (1990)

    ADS  Google Scholar 

  79. 79.

    S C Pieper et al, Phys. Rev. C 18, 180 (1978)

    ADS  Google Scholar 

  80. 80.

    Sonika et al, Phys. Rev. C 92, 024603 (2015)

    ADS  Google Scholar 

  81. 81.

    J F Liang, L L Lee, J C Mahon and R J Vojtech, Phys. Rev. C 50, 1550 (1994)

    ADS  Google Scholar 

  82. 82.

    D M Herrick, F L H Wolfs, D C Bryan, C G Freeman, K L Kurz, D H Mathews, P A A Perera and M T Zanni, Phys. Rev. C 52, 744 (1995)

    ADS  Google Scholar 

  83. 83.

    S Szilner et al, Phys. Rev. C 76, 024604 (2007)

    ADS  Google Scholar 

  84. 84.

    D Tomasi et al, Phys. Rev. C 48, 2840 (1993)

    ADS  Google Scholar 

  85. 85.

    L Corradi et al, Phys. Rev. C 54, 201 (1996)

    ADS  Google Scholar 

  86. 86.

    L Corradi, A M Stefanini, J H He, S Beghini, G Montagnoli, F Scarlassara, G F Segato, G Pollarolo and C H Dasso, Phys. Rev. C 56, 938 (1997)

    ADS  Google Scholar 

  87. 87.

    J J Kolata, K E Rehm, D G Kovar, G S F Stephans, G Rosner, H Ikezoe and R Vojtech, Phys. Rev. C 30, 125 (1984)

    ADS  Google Scholar 

  88. 88.

    A M van den Berg, W Henning, L L Lee, K T Lesko, K E Rehm, J P Schiffer, G S F Stephans, F L H Wolfs and W S Freeman, Phys. Rev. C 37, 178 (1988)

    ADS  Google Scholar 

  89. 89.

    S Szilner et al, Eur. Phys. J. A 21, 87 (2004)

    ADS  Google Scholar 

  90. 90.

    Quasielastic neutron transfer reactions on samarium isotopes, Argon National Lab Physics Division Annual Report (1985)

  91. 91.

    K E Rehm, A M van den Berg, J J Kolata, D G Kovar, W Kutschera, G Rosner, G S F Stephans and J L Yntema, Phys. Rev. C 37, 2629 (1988)

    ADS  Google Scholar 

  92. 92.

    K E Rehm, B G Glagola, W Kutschera, F L H Wolfs and A H Wuosmaa, Phys. Rev. C 47, 2731 (1993)

    ADS  Google Scholar 

  93. 93.

    L Corradi et al, Phys. Rev. C 66, 024606 (2002)

    ADS  Google Scholar 

  94. 94.

    F L H Wolfs, K E Rehm, W C Ma, J P Schiffer and T F Wang, Phys. Rev. C 45, 2283 (1992)

    ADS  Google Scholar 

  95. 95.

    A J Baltz, P D Bond, O Hansen, J Cheng-Lie, P R Christensen, S Pontoppidan, F Videbaek, D Schüll, S Wen-Qing and H Freiesleben, Phys. Rev. C 29, 2392 (1984)

    ADS  Google Scholar 

  96. 96.

    J Speer, W von Oertzen, D Schüll, M Wilpert, H Bohlen, B Gebauer, B Kohlmeyer and F Pühlhofer, Phys. Lett. B 259, 422 (1991)

    ADS  Google Scholar 

  97. 97.

    R Künkel, W von Oertzen, H G Bohlen, B Gebauer, H A Bösser, B Kohlmeyer, J Speer, F Pühlhofer and D Schüll, Z. Phys. A 336, 71 (1990)

    Google Scholar 

  98. 98.

    K E Rehm, Multi-neutron transfer reactions at subbarrier energies, Argon National Lab Physics Division Report (1999)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A M Vinodkumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanila, S., Vinodkumar, A.M. & Babu, B.R.S. Systematics of multinucleon transfer in heavy-ion reactions. Pramana - J Phys 94, 70 (2020). https://doi.org/10.1007/s12043-020-1919-8

Download citation

Keywords

  • Multinucleon transfer
  • reduced transfer cross-sections
  • neutron separation energy

PACS Nos

  • 24.10.-i
  • 25.70.Hi
  • 21.10.Dr