Arbitrary amplitude electron-acoustic solitons and double layers with Cairns–Tsallis-distributed hot electrons

Abstract

In the present research paper, propagation attributes of nonlinear electron-acoustic (EA) waves have been investigated in an unmagnetised plasma system consisting of cool fluid electrons and hot electrons observing the hybrid Cairns–Tsallis distribution. Sagdeev pseudopotential method has been used to explore the occurrence of large-amplitude solitons and double layers, focussing on how their characteristics depend upon different parameters. The analysis is further extended to examine the dynamics of large- and small-amplitude double layers. It is revealed that the present plasma system supports the existence of negative potential solitons and double layers in certain region of parameter space. The numerical results show that the Cairns–Tsallis-distributed hot electrons may affect the spatial profiles of EA waves and double layers. The present investigation may be relevant to the observation from Viking satellite in the dayside auroral zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    D Henry and J P Trguier, J. Plasma Phys. 8, 311 (1972)

    ADS  Article  Google Scholar 

  2. 2.

    S Ikezawa and Y Nakamura, J. Phys. Soc. Jpn. 50, 962 (1981)

    ADS  Article  Google Scholar 

  3. 3.

    W C Fieldmann, R C Anderson, S J Bame, S P Gary, J T Gosling, D J McComas, M F Thomsen, G Paschmann and M M Hoppe, J. Geophys. Res. 88, 96 (1983)

    ADS  Article  Google Scholar 

  4. 4.

    M F Thomsen, H C Barr, S P Gary, W C Fieldmann and T E Cole, J. Geophys. Res. 88, 3035 (1983)

    ADS  Article  Google Scholar 

  5. 5.

    S P Gary and R L Tokar, Phys. Fluids 28, 2439 (1985)

    ADS  Article  Google Scholar 

  6. 6.

    S D Bale, P J Kellogg, D E Larson, R P Lin, K Geotz and P Lepping, J. Geophys. Res. 25, 2929 (1998)

    Google Scholar 

  7. 7.

    I Kourakis and P K Shukla, Phys. Rev. E 69, 036411 (2004)

    ADS  Article  Google Scholar 

  8. 8.

    B D Fried and R W Gould, Phys. Fluids 4, 139 (1961)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    T H Stix, Waves in plasma (AIP, New York, 1992)

    Google Scholar 

  10. 10.

    K Watanabe and T Taniuti, J. Phys. Soc. Jpn. 43, 1819 (1977)

    ADS  Article  Google Scholar 

  11. 11.

    R L Tokar and S P Gary, Geophys. Res. Lett. 11, 1180 (1984)

    ADS  Article  Google Scholar 

  12. 12.

    C S Lin, J L Burch, S D Shawhan and D A Gurnett, J. Geophys. Res. 89, 96 (1983)

    Google Scholar 

  13. 13.

    H Matsumoto, H Kojima, T Miyatake, Y Omura, M Okada, I Nagano and M Tsutsui, Geophys. Res. Lett. 21, 1915 (1994)

    Article  Google Scholar 

  14. 14.

    C A Cattell, J Dombeck, J R Wygant, M K Hudson, F S Mozer, M A Temerin, W K Peterson, C A Kletzing, C T Russell and R F Pfaff, Geophys. Res. Lett. 26, 425 (1999)

    ADS  Article  Google Scholar 

  15. 15.

    R L Mace, G Amery and M A Helberg, Phys. Plasmas 6, 44 (1999)

    ADS  Article  Google Scholar 

  16. 16.

    H Alfven and P Carlqvist, Sol. Phys. 1, 220 (1967)

    ADS  Article  Google Scholar 

  17. 17.

    M Temerin, K Cerny, W Lotkop and F S Mozer, Phys. Rev. Lett. 48, 1175 (1982)

    ADS  Article  Google Scholar 

  18. 18.

    P Carlqvist, IEEE Trans. Plasma Sci. PS-14, 794 (1986)

    ADS  Article  Google Scholar 

  19. 19.

    I Langmuir, Phys. Rev. 33, 954 (1929)

    ADS  Article  Google Scholar 

  20. 20.

    M J Schönhuber, Quecksilber-Niederdruck-Gasenladunger (Lachner, München, 1958)

  21. 21.

    H Alfven, Space Sci. 8, 4046 (2011)

    Google Scholar 

  22. 22.

    C E McIlwain, Direct measurement of particles producing visible aurorae, Ph.D. Thesis (The University of Iowa, 1960)

  23. 23.

    F S Mozer, C W Carlson, M K Hudson, R B Torbert, B Parady, J Yatteau and M C Kelley, Phys. Rev. Lett. 38, 292 (1977)

    ADS  Article  Google Scholar 

  24. 24.

    F Verheest, T Cattaert, M A Hellberg and R L Mace, Phys. Plasmas 13, 042301 (2006)

    ADS  Article  Google Scholar 

  25. 25.

    W M Moslem, P K Shukla, S Ali and R Schlickeiser, Phys. Plasmas 14, 042107 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    O R Rufai, R Bharuthram, S V Singh and G S Lakhina, Phys. Plasmas 19, 122308 (2012)

    ADS  Article  Google Scholar 

  27. 27.

    L A Gougam and M Tribeche, Astrophys. Space Sci. 331, 181 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    B Sahu, Phys. Plasmas 18, 082302 (2011)

    ADS  Article  Google Scholar 

  29. 29.

    H R Pakzad and M Tribeche, Astrophys. Space Sci. 334, 45 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    R Amour, M Tribeche and P K Shukla, Astrophys. Space Sci. 338, 287 (2012)

    ADS  Article  Google Scholar 

  31. 31.

    B Sahu, Phys. Plasmas 17, 122305 (2010)

    ADS  Article  Google Scholar 

  32. 32.

    S Ali Shan and H Saleem, Astrophys. Space Sci. 363, 99 (2018)

  33. 33.

    R Bharuthram and P K Shukla, Phys. Scr. 34, 732 (1985)

    ADS  Article  Google Scholar 

  34. 34.

    T S Gill, H Kaur, S Bansal, N S Saini and P Bala, Eur. Phys. J. D 41, 151 (2007)

    ADS  Article  Google Scholar 

  35. 35.

    Y Futaana, S Machida, Y Saito, A Matsuoka and H Hayakawa, J. Geophys. Res. 108, 1025 (2003)

    Article  Google Scholar 

  36. 36.

    R Lundin, A Zakharov, R Pellinen, H Borg, B Hultqvist, N Pissarenko, E M Dubinin, S W Barabash, I Liede and H Koskinen, Nature 341, 609 (1989)

    ADS  Article  Google Scholar 

  37. 37.

    R A Cairns, A A Mamun, R Bingham, R Bostrom, R O Dendy, C M C Nairn and P K Shukla, Geophys. Rev. Lett. 22, 2709 (1995)

    ADS  Article  Google Scholar 

  38. 38.

    C Tsallis, J. Stat. Phys. 52, 479 (1988)

    ADS  Article  Google Scholar 

  39. 39.

    M Tribeche, R Amour and P K Shukla, Phys. Rev. E 85, 037401 (2012)

    ADS  Article  Google Scholar 

  40. 40.

    G Williams, I Kourakis, F Verheest and M A Hellberg, Phys. Rev. E 88, 023103 (2013)

    ADS  Article  Google Scholar 

  41. 41.

    O Bouzit, L A Gougam and M Tribeche, Phys. Plasmas 22, 052112 (2015)

    ADS  Article  Google Scholar 

  42. 42.

    M Dutta and B Sahu, Phys. Plasmas 23, 062313 (2016)

    ADS  Article  Google Scholar 

  43. 43.

    S Rostampooran and S Saviz, J. Theor. Appl. Phys. 11, 127 (2017)

    ADS  Article  Google Scholar 

  44. 44.

    P Bala, T S Gill, A S Bains and H Kaur, Indian J. Phys. 91, 1625 (2017)

    ADS  Article  Google Scholar 

  45. 45.

    S Bansal, M Aggarwal and T S Gill, Pramana – J. Phys. 92, 49 (2019)

    Google Scholar 

  46. 46.

    B Sahu and R Roychoudhury, Phys. Plasmas 13, 072302 (2006)

    ADS  Article  Google Scholar 

  47. 47.

    F Verheest and M A Hellberg, Phys. Plasmas 22, 072303 (2015)

    ADS  Article  Google Scholar 

  48. 48.

    O R Rufai, Phys. Plasmas 22, 052309 (2015)

    ADS  Article  Google Scholar 

  49. 49.

    M Berthomier, R Pottelette, M Malingre and Y Khotyainsev, Phys. Plasmas 7, 2987 (2000)

    ADS  Article  Google Scholar 

  50. 50.

    S V Singh and G S Lakhina, Non. Process. Geophys. 11, 275 (2004)

    ADS  Article  Google Scholar 

  51. 51.

    R Z Sagdeev, Rev. Plasma Phys. 4, 23 (1966)

    ADS  Google Scholar 

  52. 52.

    N Dubouloz, R A Treumann, R Pottelette and M M Malingre, J. Geophys. Res. 98, 17415 (1993)

    ADS  Article  Google Scholar 

  53. 53.

    G S Lakhina and S V Singh, Planet Space Sci. 49, 107 (2001)

    ADS  Article  Google Scholar 

  54. 54.

    B Buti, Phys. Lett. A 76, 251 (1980)

    ADS  Article  Google Scholar 

  55. 55.

    K Nishihara and M Tajiri, J. Phys. Soc. Jpn. 50, 4047 (1981)

    ADS  Article  Google Scholar 

  56. 56.

    A Danehkar, N S Saini, M A Helberg and I Kourakis, Phys. Plasma 18, 072902 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Parveen Bala.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bala, P., Kaur, A. & Kaur, K. Arbitrary amplitude electron-acoustic solitons and double layers with Cairns–Tsallis-distributed hot electrons. Pramana - J Phys 95, 20 (2021). https://doi.org/10.1007/s12043-020-02060-2

Download citation

Keywords

  • Electron-acoustic waves
  • soliton
  • double layer
  • Cairns–Tsallis distribution
  • Sagdeev pseudopotential

PACS

  • 47.35.Fg
  • 52.35.Fp
  • 52.35.Sb