Cosmic acceleration and stability of cosmological models in extended teleparallel gravity

Abstract

In this paper, we study the model of f(T) gravity in the presence of dark matter and modified holographic Ricci dark energy (MHRDE) in locally rotationally symmetric (LRS) Bianchi type-I space–time. To achieve a physically realistic solution of the field equations, we have considered volumetric power and exponential expansion laws. We plot the corresponding cosmological parameters for dark energy components in terms of redshift; thereafter we investigate the accelerated expansion of the Universe. The physical and geometrical parameters of the models are also discussed in detail. The Statefinder diagnostic pair and jerk parameter are analysed to characterise completely different phases of the Universe.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    C B Netterfield et al, Astrophys. J.  571, 604 (2002)

    ADS  Article  Google Scholar 

  2. 2.

    J L Tonry et al, Astrophys. J.  594, 1 (2003).

    ADS  Article  Google Scholar 

  3. 3.

    A G Riess et al, Astron. J.  116, 1009 (1998)

    ADS  Article  Google Scholar 

  4. 4.

    S Perlmutter et al, Astrophys. J.  517, 565 (1999)

    ADS  Article  Google Scholar 

  5. 5.

    C L Bennett et al, Astrophys. J. Suppl. Ser.  148, 1 (2003)

    ADS  Article  Google Scholar 

  6. 6.

    N W Halverson et al, Astrophys. J.  568, 38 (2002)

    ADS  Article  Google Scholar 

  7. 7.

    H Amirhashchi, A Pradhan and B Saha, Astrophys. Space Sci.  333, 295 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    A K Yadav, Astrophys. Space Sci.  335, 565 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    C Defayet et al, Phys. Rev. D  65, 044023 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    B Saha, Chin. J. Phys.  43,1035 (2005)

    Google Scholar 

  11. 11.

    J Yoo and Y Watanabe, Int. J. Mod. Phys. D  21,1230002 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    A Banijamali, M R Setare and B Fazlpour, Int. J. Theor. Phys.  50, 3275 (2011)

    Article  Google Scholar 

  13. 13.

    S Nojiri, S D Odintsov and H Stefancic, Phys. Rev. D  74, 086009 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    S Nojiri and S D Odintsov, Cosmol. J. Phys. A  40, 6725 (2007)

    ADS  Article  Google Scholar 

  15. 15.

    R Ferraro and F Fiorini, Phys. Rev. D  75, 084031 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    G R Bengochea and R Ferraro, Phys. Rev. D  79, 124019 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    G R Bengochea, Phys. Lett. B  695, 405 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    A Einstein, Preuss. Akad. Wiss. Phys. Math. Kl.  217 (1928)

  19. 19.

    E V Linder, Phys. Rev. D  81, 127301 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    K Karami and A Abdolmaleki, arXiv:1009.3587v1 (2010)

  21. 21.

    M Sharif and S Rani, arXiv:1105.6228v1 [gr-qc] (2011)

  22. 22.

    M Jamil, D Momeni and R Myrzakulov, Eur. Phys. J. C 72, 2122 (2012)

    ADS  Article  Google Scholar 

  23. 23.

    M Jamil, K Yesmakhanova, D Momeni and R Myrzakulov, Cen. Eur. J. Phys. 10, 1065 (2012)

    Google Scholar 

  24. 24.

    M Setare and F Darabi, Gen. Relativ. Gravit.  44, 2521 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    M E Rodrigues, A V Kpadonou, F Rahaman, P J Oliveira and M J S Houndjo, arXiv:1408.2689v1 (2014)

  26. 26.

    M Jamil and M Yussouf, arXiv:1502.00777v1 (2015)

  27. 27.

    M Krššák and E N Saridakis, Class. Quant. Grav.  33, 115009 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    R Ferraro and M J Guzmán, Phys. Rev. D  98, 124047 (2018)

    ADS  Google Scholar 

  29. 29.

    R Ferraro and M J Guzmán, Phys. Rev. D  97, 104028 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    A Toporensk and P Tretyakov, arXiv:1911.06064v1 (2019)

  31. 31.

    A Cohen et al, Phys. Rev. Lett.  82, 4971 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    S D H Hsu, Phys. Lett.  594, 13 (2014)

    Article  Google Scholar 

  33. 33.

    C Gao et al, Phys. Rev. D  79, 043511 (2009)

    ADS  Article  Google Scholar 

  34. 34.

    L N Granda and A Oliveros, Phys. Lett. B  669, 275 (2008)

    ADS  Article  Google Scholar 

  35. 35.

    M R Setare, Phys. Lett. B  644, 99 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    M R Setare and E C Vagenas, Int. J. Mod. Phys. D  18,147 (2009)

    ADS  Article  Google Scholar 

  37. 37.

    S Sarkar and C R Mahanta, Int. J. Theor. Phys. 52, 1482 (2013)

    Article  Google Scholar 

  38. 38.

    S Sarkar, Astrophys. Space Sci. 349, 985 (2014)

    ADS  Article  Google Scholar 

  39. 39.

    K S Adhav, S L Munde, G B Tayade and V D Bokey, Astrophys. Space Sci. 359, 24 (2015)

    ADS  Article  Google Scholar 

  40. 40.

    M Kiran, D R K Reddy and V U M Rao, Astrophys. Space Sci. 354, 2099 (2014)

    Article  Google Scholar 

  41. 41.

    M V Santhi, V U M Rao and Y Aditya, Int. J. Theor. Phys., https://doi.org/10.1007/s10773-016-3175-8 (2016)

  42. 42.

    K Das and T Sultana, Astrophys. Space Sci. 360, 4 (2015)

    ADS  Article  Google Scholar 

  43. 43.

    K Das and T Sultana, Astrophys. Space Sci. 361, 53 (2016)

    ADS  Article  Google Scholar 

  44. 44.

    M V Santhi, V U M Rao and Y Aditya, Prespacetime J. 7, 1379 (2016)

    Google Scholar 

  45. 45.

    M V Santhi, V U M Rao and Y Aditya, Can. J. Phys. 95, 179 (2016)

    ADS  Article  Google Scholar 

  46. 46.

    M Srivastava and C P Singh, arXiv:1706.06777 (2017)

  47. 47.

    F Felegary, F Darabi and M R Setare, Int. J. Mod. Phys. D 27, 1850017 (2018)

    ADS  Article  Google Scholar 

  48. 48.

    M Srivastava and C P Singh, Int. J. Geom. Meth. Mod. Phys., https://doi.org/10.1142/S0219887818501244 (2018)

  49. 49.

    G Varshney, U K Sharma and A Pradhan, New Astron.  70, 36 (2019)

    ADS  Article  Google Scholar 

  50. 50.

    M Sharif and S Rani, Mod. Phys. Lett. A  26, 1657 (2011)

    ADS  Article  Google Scholar 

  51. 51.

    S Chen and J Jing, Phys. Lett. B  679, 144 (2009)

    ADS  Article  Google Scholar 

  52. 52.

    H Dong et al, arXiv:1304.6587v3 (2013)

  53. 53.

    Ö Akarsu and O B Kılınç, Gen. Relativ. Gravit.  42, 763 (2010)

    ADS  Article  Google Scholar 

  54. 54.

    S Kumar and O Akarsu, Eur. Phys. J. Plus  127, 64 (2012)

    Article  Google Scholar 

  55. 55.

    P K Sahoo, B Mishra and S K Tripathy, Indian J. Phys.  90, 485 (2016)

    ADS  Article  Google Scholar 

  56. 56.

    A Y Shaikh, Adv. Astrophys.  2(3), 155 (2017)

    Google Scholar 

  57. 57.

    S D Katore, K S Adhav, A Y Shaikh and M M Sancheti, Astrophys. Space Sci.  333, 333 (2011)

    ADS  Article  Google Scholar 

  58. 58.

    A Y Shaikh and S D Katore, Pramana – J. Phys.  87: 88 (2016)

    ADS  Article  Google Scholar 

  59. 59.

    A Y Shaikh, Int. J. Theor. Phys. 55, 3120 (2016)

    Article  Google Scholar 

  60. 60.

    A Y Shaikh, A S Shaikh and K S Wankhade, J. Astrophys. Astr.  40, 25 (2019)

    ADS  Article  Google Scholar 

  61. 61.

    S D Katore and A Y Shaikh, Astrophys. Space Sci.  357, 27 (2015)

    ADS  Article  Google Scholar 

  62. 62.

    V Sahni, T D Saini, A A Starobinsky and U Alam, JETP Lett.  77, 201 (2003)

    ADS  Article  Google Scholar 

  63. 63.

    M Visser, Class. Quant. Grav.  21, 2603 (2004)

    ADS  Article  Google Scholar 

  64. 64.

    M Visser, Gen. Relativ. Gravit.  37, 1541 (2005)

    ADS  Article  Google Scholar 

  65. 65.

    S D Katore and A Y Shaikh, Int. J. Theor. Phys.  51, 1881 (2012)

    Article  Google Scholar 

  66. 66.

    A Y Shaikh, S V Gore and S D Katore, New Astron.  80, 101420 (2020)

    Article  Google Scholar 

  67. 67.

    R Raushani, A K Shukla, R Chaubey and T Singh, Pramana – J. Phys.  92: 79 (2019)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors are very much grateful to the honourable referees and the editor for the illuminating suggestions that have significantly improved our work in terms of research quality and presentation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S V Gore.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.Y., Gore, S.V. & Katore, S.D. Cosmic acceleration and stability of cosmological models in extended teleparallel gravity. Pramana - J Phys 95, 16 (2021). https://doi.org/10.1007/s12043-020-02048-y

Download citation

Keywords

  • Locally rotationally symmetric Bianchi type-I space–time
  • modified holographic Ricci dark energy
  • f(T) gravity
  • stability factor

PACS Nos

  • 04.20.−q
  • 98.80.Jk
  • 04.20.Jb