Transist dark energy and thermodynamical aspects of the cosmological model in teleparallel gravity

Abstract

In this article, the perfect fluid is introduced for plane symmetric space–time in the framework of teleparallel gravity using hybrid expansion law (HEL). The behaviour of accelerating Universe is discussed by considering the depiction model of f(T) gravity, i.e. \(f(T)=T^{\eta }\). The geometrical and physical parameters of the model are studied. An effective equation of state (EoS) has been investigated in the cosmological evolution with perfect fluid. The basic equations of thermodynamics have been deduced and the thermodynamical aspects of the model have been discussed. Thermodynamic temperature and entropy density of the model are also obtained. The statefinder parameters and jerk parameter analysis are discussed for our obtained model to distinguish our model from other dark energy models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    A G Reiss et al, Astron. J. 116, 1009 (1998)

    ADS  Article  Google Scholar 

  2. 2.

    S Perlmutter et al, Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  3. 3.

    C Fedeli, L Moscardini and M Bertelmann, Astron. Astrophys. 500, 667 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    Z Y Huang, B Wang, E Abdalla and R K Sul, J. Cosmol. Astropart. Phys. 13, 0605 (2006)

    Google Scholar 

  5. 5.

    R R Caldwell and M Doran, Phys. Rev. D 69, 103517 (2004)

    ADS  Article  Google Scholar 

  6. 6.

    S F Daniel, Phys. Rev. D 77, 103513 (2008)

    ADS  Article  Google Scholar 

  7. 7.

    R Ferraro and F Fiorini, Phys. Rev. D 75, 084031 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    G R Bengochea and R Ferraro, Phys. Rev. D 79, 124019 (2009)

    ADS  Article  Google Scholar 

  9. 9.

    T Harko, F S N Lobo, S Nojiri and S D Odintsov, Phys. Rev. D 84, 024020 (2011)

    ADS  Article  Google Scholar 

  10. 10.

    V F Cardone, H Farajollahi and A Ravanpak, Phys. Rev. D 84, 043527 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    M Jamil, D Momeni, N S Serikbayev and R Myrzakulov, Astrophys. Space Sci. 339, 37 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    M Sharif and S Azeem, Astrophys. Space Sci. 342, 521 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    B Mirza and F Oboudiat, Gen. Relativ. Gravit. 51(7), 96 (2019)

    ADS  Article  Google Scholar 

  14. 14.

    K Bamba et al, J. Cosmol. Astropart. Phys. 1101, 021 (2011)

    ADS  Article  Google Scholar 

  15. 15.

    M Sharif and S Rani, Phys. Scr. 84, 055005 (2011)

    ADS  Article  Google Scholar 

  16. 16.

    T Wang, Phys. Rev. D 84, 024042 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    C Bohmer, A Mussa and N Tamanini, Class. Quantum Grav. 28, 245020 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    E V Linder, Phys. Rev. D 81, 127301 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    K Bamba and C Geng, J. Cosmol. Astropart. Phys.  11, 008 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    M Sharif and Shamaila Rani, Eur. Phys. J. Plus 129, 237 (2014)

    Article  Google Scholar 

  21. 21.

    M Sharif and Shamaila Rani, Int. J. Theor. Phys54, 2524 (2015)

    Article  Google Scholar 

  22. 22.

    P Wu and H Yu, Phys. Lett. B 692, 176 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    R J Yang, Eur. Phys. J. C 71, 1797 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    U Wu and H Yu, Eur. Phys. J. C 71, 1552 (2011)

    ADS  Article  Google Scholar 

  25. 25.

    K Karami and A Abdolmaleki, Res. Astron. Astrophys. 13, 757 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    K Karami and A Abdolmaleki, J. Phys. Conf. Ser. 375, 032009 (2012)

    Article  Google Scholar 

  27. 27.

    J B Dent, S Dutta and E N Saridakis, J. Cosmol. Astropart. Phys. 1101, 009 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    B Li, T P Sotiriou and J D Barrow, Phys. Rev. D 83, 064035 (2011)

    ADS  Article  Google Scholar 

  29. 29.

    S H Chen et al, Phys. Rev. D 83, 023508 (2011)

    ADS  Article  Google Scholar 

  30. 30.

    M Sharif and S Rani, Mod. Phys. Lett. A  26, 1657 (2011)

    ADS  Article  Google Scholar 

  31. 31.

    M E Rodrigues, A V Kpadonou, F Rahaman, P J Oliveira and M J S Houndjo, arXiv:1408.2689v1 [gr-qc] (2014)

  32. 32.

    M Sharif and S Azeem, Commun. Theor. Phys. 61, 482 (2014)

    ADS  Article  Google Scholar 

  33. 33.

    M Jamil and M Yussouf, arXiv:1502.00777v1 [gr-qc] (2015)

  34. 34.

    G Abbas, A Kanwal and M Zubair, Astrophys. Space Sci357, 109 (2015)

    ADS  Article  Google Scholar 

  35. 35.

    P Channuie and D Momeni, arXiv:1712.07927v2 [gr-qc] (2018)

  36. 36.

    M Khurshudyan, R Myrzakulov and A S Khurshudyan, Mod. Phys. Lett. A 32(18), 1750097 (2017)

    ADS  Article  Google Scholar 

  37. 37.

    M Skugoreva and A V Toporensky, Eur. Phys. J. C 78, 377 (2018)

    ADS  Article  Google Scholar 

  38. 38.

    S Capozziello, G Lambiase and E N Saridakis, Eur. Phys. J. C Part Fields 77(9), 576 (2017)

    ADS  Article  Google Scholar 

  39. 39.

    L Campanelli, P Cea and L Tedesco, Phys. Rev. Lett. 97, 131302 (2006)

    ADS  Article  Google Scholar 

  40. 40.

    L Campanelli, Phys. Rev. D 80, 063006 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    A Gruppo, Phys. Rev. D 76, 083010 (2007)

    ADS  Article  Google Scholar 

  42. 42.

    O Akarsu et al, J. Cosmol. Astropart. Phys01, 022 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    L Avile’s et al, J. Phys. Conf. Ser. 70, 012010 (2016)

    Article  Google Scholar 

  44. 44.

    S Kumar, Gravit. Cosmol. 19, 284 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  45. 45.

    A Pradhan and R Jaisaval, Int. J. Geom. Methods Mod. Phys. 15, 1850076 (2018)

    MathSciNet  Article  Google Scholar 

  46. 46.

    C R Mahanta and N Sharma, New Astron. 57, 70 (2017)

    ADS  Article  Google Scholar 

  47. 47.

    A K Yadav et al, Int. J. Theor. Phys. 54, 1671 (2015)

    Article  Google Scholar 

  48. 48.

    R Zia, D C Maurya and A Pradhan, Int. J. Geom. Methods Mod. Phys. 15, 1850168 (2018)

    MathSciNet  Article  Google Scholar 

  49. 49.

    A K Yadav and V Bhardwaj, Res. Astron. Astrophys. 18, 64 (2016)

    ADS  Article  Google Scholar 

  50. 50.

    B Mishra and S K Tripathi, Mod. Phys. A 30, 1550175 (2015)

    ADS  Article  Google Scholar 

  51. 51.

    U K Sharma et al, J. Astrophys. Astron40, 2 (2019)

    ADS  Article  Google Scholar 

  52. 52.

    P H R S Moraes, Astrophys. Space Sci. 352, 273 (2014)

    ADS  Article  Google Scholar 

  53. 53.

    P H R S Moraes, G Ribeiro and R A C Correa, Astrophys. Space Sci361, 227 (2016)

    ADS  Article  Google Scholar 

  54. 54.

    P H R S Moraes and P K Sahoo, Eur. Phys. J. C 77, 480 (2017)

    ADS  Article  Google Scholar 

  55. 55.

    K S Thorne, Astrophys. J. 148, 51 (1967)

    ADS  Article  Google Scholar 

  56. 56.

    J Kristian and R K Sachs, Astrophys. J. 143, 379 (1966)

    ADS  MathSciNet  Article  Google Scholar 

  57. 57.

    R Kantowski and R K Sachs, J. Math. Phys. 7, 433 (1966)

    ADS  Article  Google Scholar 

  58. 58.

    B Wang, Y Gong and E Abdalla, Phys. Rev. D 74, 083520 (2006)

    ADS  Article  Google Scholar 

  59. 59.

    P A R Ade et al, Astron. Astrophys. 571, 16 (2014)

    Article  Google Scholar 

  60. 60.

    G F Hinshaw et al, Astrophys. J. Suppl. Ser. 208, 19 (2013)

    ADS  Article  Google Scholar 

  61. 61.

    R K Knop et al, Astrophys. J. 598, 102 (2003)

    ADS  Article  Google Scholar 

  62. 62.

    M Tegmark et al, Phys. Rev. D 69, 103501 (2004)

    ADS  Article  Google Scholar 

  63. 63.

    E Komatsu et al, Astron. Astrophys. Suppl. Ser. 180, 330 (2009)

    ADS  Article  Google Scholar 

  64. 64.

    B Feng, X LWang and X M Zhang, Phys. Lett. B 607, 35 (2015)

    ADS  Article  Google Scholar 

  65. 65.

    J D Bekenstein, Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  Article  Google Scholar 

  66. 66.

    S W Hawking, Commun. Math. Phys43(3), 199 (1975)

    ADS  Article  Google Scholar 

  67. 67.

    K Karami and A Abdolmaleki, J. Cosmol. Astropart. Phys. 2012(04), 007 (2012)

    Article  Google Scholar 

  68. 68.

    Y S Myung, arXiv:0812.0618v1 [gr-qc]

  69. 69.

    M S Singh and S S Singh, Turk. J. Phys. 42, 198 (2018)

    Google Scholar 

  70. 70.

    V Sahni, T D Saini, A A Starobinsky and U Alam, JETP Lett. 77, 201 (2003)

    ADS  Article  Google Scholar 

  71. 71.

    T Chiba and T Nakamura, Prog. Theor. Phys. 100, 1077 (1998)

    ADS  Article  Google Scholar 

  72. 72.

    R D Blandford, M Amin and E A Baltz, Phys. Lett. B 535, 329 (2004)

    Google Scholar 

  73. 73.

    M Visser, Class. Quantum Gravity 21, 2603 (2004)

    ADS  Article  Google Scholar 

  74. 74.

    V Sahni, arXiv:astro-ph/0211084 (2002)

  75. 75.

    A Y Shaikh, A S Shaikh and K S Wankhade, J. Astrophys. Astron. 40, 25 (2019)

    ADS  Article  Google Scholar 

  76. 76.

    S D Katore, K S Adhav, A Y Shaikh and M M Sanchet, Astrophys. Space Sci. 333, 333 (2011)

    ADS  Article  Google Scholar 

  77. 77.

    S D Katore, K S Adhav, A Y Shaikh and N K Sarkate, Int. J. Theor. Phys. 49, 2558 (2010)

    Article  Google Scholar 

  78. 78.

    S D Katore and A Y Shaikh, Prespacetime J. 3(11),1087 (2012)

    Google Scholar 

  79. 79.

    S D Katore and A Y Shaikh, Bull. J. Phys. 39, 241 (2012)

    Google Scholar 

  80. 80.

    S D Katore and A Y Shaikh, Afr. Rev. Phys. 9, 0035 (2014)

    Google Scholar 

  81. 81.

    S D Katore and A Y Shaikh, Rom. J. Phys. 59(7–8), 715 (2014)

    Google Scholar 

  82. 82.

    S D Katore and A Y Shaikh, Astrophys. Space Sci. 357(1), 27 (2015)

    ADS  Article  Google Scholar 

  83. 83.

    S D Katore and A Y Shaikh, Bulg. J. Phys. 41, 274 (2015)

    Google Scholar 

  84. 84.

    S D Katore, A Y Shaikh and S Bhaskar, Bulg. J. Phys. 41(1), 34 (2014)

    Google Scholar 

  85. 85.

    S D Katore, A Y Shaikh, D V Kapse and S A Bhaskar, Int. J. Theor. Phys. 50, 2644 (2011)

    Article  Google Scholar 

  86. 86.

    S D Katore and A Y Shaikh, Int. J. Theor. Phys. 51, 1881 (2012)

    Article  Google Scholar 

  87. 87.

    S D Katore and A Y Shaikh, Afr. Rev. Phys. 7, 0004 (2012)

    Google Scholar 

  88. 88.

    S D Katore and A Y Shaikh, Afr. Rev. Phys. 7, 0054 (2012)

    Google Scholar 

  89. 89.

    A Y Shaikh, Adv. Astrophys. 2(3), 155 (2017)

    Google Scholar 

  90. 90.

    A Y Shaikh and S D Katore, Pramana – J. Phys. 87, 83 (2016)

    ADS  Article  Google Scholar 

  91. 91.

    A Y Shaikh and S D Katore, Pramana – J. Phys. 87: 88 (2016)

    ADS  Article  Google Scholar 

  92. 92.

    A Y Shaikh and K S Wankhad, Phys. Astron. Int. J. 1(4), 00020 (2017)

    Article  Google Scholar 

  93. 93.

    A Y Shaikh and K S Wankhade, Theor. Phys. 2(1), 34 (2012)

    Google Scholar 

  94. 94.

    A Y Shaikh, K S Wankhade and S R Bhoya, Int. J. Sci. Res. Sci. Technol. 3(8), 1248 (2017)

    Google Scholar 

  95. 95.

    S Chakrabarti, J L Said and K Bamba, Eur. Phys. J. C 79, 454 (2019)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge their deep sense of gratitude to the anonymous eminent referee whose valuable suggestions have improved the quality of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A Y Shaikh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.Y., Shaikh, A.S. & Wankhade, K.S. Transist dark energy and thermodynamical aspects of the cosmological model in teleparallel gravity . Pramana - J Phys 95, 19 (2021). https://doi.org/10.1007/s12043-020-02047-z

Download citation

Keywords

  • Plane symmetric model
  • perfect fluid
  • f(T) gravity

PACS Nos

  • 98.80.Jk
  • 04.50.Kd
  • 04.20.Jb