Analytical and numerical investigation of Rayleigh–Taylor instability in nanofluids

Abstract

This article is a maiden and naive attempt to formulate, analyse and investigate the Rayleigh–Taylor (RT) instability of two superimposed horizontal layers of nanofluids having different densities. Conservation equations are formulated and linearised by keeping in mind that density of the base fluids as well as nanoparticles is not constant. Linearised perturbed equations are sorted out by using the technique of normal modes and a dispersion relation incorporating the effects of surface tension, Atwood number and volume fraction of nanoparticles is obtained. Stable and unstable modes of RT instability are scrutinised using Routh–Hurtwitz criterion in the presence/absence of nanoparticles and presented graphically. Numerical calculations have been performed to explore the effect of surface tension, Atwood number and volume fraction of the nanoparticles. It is observed that in the presence/absence of nanoparticles, surface tension has a significant impact on stabilising the unstable mode of RT instability whereas Atwood number and volume fraction of nanoparticles hasten this instability. The graphical representations of these numerical investigations confirm the very explanation of RT instability under the effect of different parameters that have significant impact on the intensity of growth rate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    S Choi, D A Siginer and H P Wang (Eds), ASME FED 231/MD-66, 99 (1995)

  2. 2.

    H Masuda, A Ebata, K Teramae and N Hishinuma, Netsu Bussei 7, 227 (1993)

    Article  Google Scholar 

  3. 3.

    S K Das, N Putra, P Thiesen and W Roetzel, ASME J. Heat Transfer 125, 567 (2003)

    Article  Google Scholar 

  4. 4.

    J Buongiorno and W Hu, Proceedings of ICAPP’05 (Seoul, 2005)

  5. 5.

    D Y Tzou, Int. J. Heat Mass Transf. 51, 2967 (2008)

    Article  Google Scholar 

  6. 6.

    D A Nield and A Bejan, Convection in porous media, 3rd edn (Springer, New York, 2006)

    Google Scholar 

  7. 7.

    D A Nield and A V Kuznetsov, Int. J. Heat Mass Transf. 52, 5796 (2009)

    Article  Google Scholar 

  8. 8.

    D A Nield and A V Kuznetsov, Eur. J. Mech BioFluids 29, 217 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    B S Bhadauria, A Kumar, J Kumar, N C Sacheti and P Chandran, Transp. Porous Media 90, 687 (2011)

  10. 10.

    D Yadav, G S Agrawal and R Bhargava, Int. J. Theor. Appl. Multisc. Mech. 2, 198 (2012)

  11. 11.

    U Gupta, J Ahuja and R K Wanchoo, Int. J. Heat Mass Transf. 64, 1163 (2013)

    Article  Google Scholar 

  12. 12.

    U Gupta, J Ahuja and R K Wanchoo, Procedia Eng. 127, 325 (2015)

    Article  Google Scholar 

  13. 13.

    J Sharma, U Gupta, R K Wanchoo and J Ahuja, Perspectives in science (Elsevier Publication, 2016) Vol. 8, p. 495

  14. 14.

    B S Bhadauria, Transp. Porous Media 70, 191 (2007)

    MathSciNet  Article  Google Scholar 

  15. 15.

    J Ahuja, J Sharma, U Gupta and R K Wanchoo, J. Nanofluids 5, 436 (2016)

    Article  Google Scholar 

  16. 16.

    J Ahuja and U Gupta, Am. Sci. Pub. 8, 1 (2019)

    Google Scholar 

  17. 17.

    A J Chamkha, S Sazegar, E Jamesahar and M Ghalambaz, Energies 12, 541 (2019)

    Article  Google Scholar 

  18. 18.

    J Ahuja and U Gupta, Int. J. Math. Eng. Manag. Sci. 4, 139 (2019)

    Google Scholar 

  19. 19.

    J Sharma, U Gupta and V Sharma, J. Appl. Fluid Mech. 10, 1387 (2017)

    Article  Google Scholar 

  20. 20.

    D A Nield and A V Kuznetsov, Int. J. Heat Mass Transf. 68, 212(2014)

    Article  Google Scholar 

  21. 21.

    S Chandrasekhar, Hydrodynamic and hydromagnetic stability (Dover Publication, New York, 1981)

    Google Scholar 

  22. 22.

    R C Sharma and K C Sharma, Acta Phys. 45, 213 (1978)

    Article  Google Scholar 

  23. 23.

    P K Sharma, R P Prajapati and R K Chhajlani, Acta Phys. Polon. \(A\)118, 576 (2010)

  24. 24.

    A Elgowainy and N Ashgriz, Phys. Fluids 9, 1635 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    A R Piriz, O D Cortázar, J J López Cela and N A Tahir, Am. J. Phys. 74, 1095 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    P K Bhatia, Astrophys. Space Sci. 26, 319 (1974)

    ADS  Article  Google Scholar 

  27. 27.

    A Diaz, R Soler and L J Ballester, Astrophys. J. 754, 1 (2012)

    ADS  Article  Google Scholar 

  28. 28.

    P K Sharma, A Tiwari, S Argal and R K Chhajlani, J. Phys. Conf. Ser. 534, 012054 (2014)

    Article  Google Scholar 

  29. 29.

    V Bychkov, M Marklund and M Modestov, Phys. Lett. A 372, 3042 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    M H O Allah, Appl. Math. Comput. 217, 7920 (2011)

    MathSciNet  Google Scholar 

  31. 31.

    J Cao, H Ren, Z Wu and P K Chu, Phys. Plasmas 15, 012110 (2008)

    ADS  Article  Google Scholar 

  32. 32.

    G Hoshoudy, Plasma Phys. Rep. 37, 775 (2011)

    ADS  Article  Google Scholar 

  33. 33.

    P K Sharma, A Tiwari, R P Prajapati and R K Chhajlani, Therm. Sci. 20, 119 (2016)

    Article  Google Scholar 

  34. 34.

    B M Agoor and N T M Eldabe, J. Appl. Fluid Mech. 7, 573 (2014)

    Google Scholar 

  35. 35.

    R Duan, F Jiang and J Yin, Acta Math. Sci. B 35,1359 (2015)

    Article  Google Scholar 

  36. 36.

    B J Kim and K D Kim, Phys. Rev. E 93, 043123(2016)

    ADS  Article  Google Scholar 

  37. 37.

    N Schneider and S Gauthier, Fluid Dyn. Res. 48, 015504 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    M H O Allah, Gen. Math. Notes 20, 67 (2013)

    Google Scholar 

  39. 39.

    S M Prasad, IJMCAR 1, 1 (2011)

    Google Scholar 

  40. 40.

    S A Piriz, A R Piriz and N A Tahir, Phys. Rev.\(E\)97,043106 (2018)

  41. 41.

    A Volk and C J Khaler, Exp. Fluids 59, 75 (2018)

    Article  Google Scholar 

  42. 42.

    J B Segur and H E Oberstar, Ind. Eng. Chem. 43, 2117 (1951)

  43. 43.

    R C Sharma and V K Bhardwaj, Z. Naturforch. \(A\)49, 927 (1994)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jyoti Ahuja.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahuja, J., Girotra, P. Analytical and numerical investigation of Rayleigh–Taylor instability in nanofluids. Pramana - J Phys 95, 25 (2021). https://doi.org/10.1007/s12043-020-02046-0

Download citation

Keywords

  • Nanofluids
  • Rayleigh–Taylor instability
  • Atwood number
  • surface tension
  • volume fraction of nanoparticles

PACS Nos

  • 52.35.Py
  • 47.51.+a
  • 47.11.-j