Investigation of entanglement entropy in cyclic bipartite graphs using computer software


We investigate the entanglement of the ground state in the quantum cyclic graphs whose nodes are considered as quantum harmonic oscillators. To this end, the Schmidt numbers and entanglement entropy between two arbitrary partitions with equal nodes of a cyclic graphs, are calculated. For that, the local operation is used to build singular value decomposition of potential matrix of cyclic graphs. Then the maximum value of entanglement entropy among all bipartite cyclic graphs is obtained.

This is a preview of subscription content, access via your institution.


  1. 1.

    M A Nielsen and I L Chuang, Quantum computation and quantum information (Cambridge University Press, 2000)

  2. 2.

    A Peres, Quantum theory: Concepts and methods (Kluwer Academic Publishers, Dordrecht, 1993)

    Google Scholar 

  3. 3.

    J Preskill, Quantum computation (1997)

  4. 4.

    D Bouwmeester, A Ekert and A Zeilinger (Eds.), The physics of quantum information (Springer, Berlin, 2000)

    Google Scholar 

  5. 5.

    G Alber, R Beth, M Horodecki, P Horodecki, R Horodecki, M Rotteler, H Weinfurter, R Werner and A Zeilinger (Eds.), Quantum information (Springer-Verlag, Berlin, 2001)

    Google Scholar 

  6. 6.

    L E Ballentine, Am. J. Phys55, 785 (1986)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    R Horodecki, P Horodecki, M Horodecki and K Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    M B Plenio and S Virmani, Quantum Inf. Comput. 7, 1 (2007)

    MathSciNet  Google Scholar 

  9. 9.

    M J Donald, M Horodecki and O Rudolph, J. Math. Phys. 43, 4252 (2002)

    Article  Google Scholar 

  10. 10.

    J Sperling and W Vogel, Phys. Scr. 83, 045002 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    Y Guo and H Fan, Quant-ph: 1304, 1950 (2013)

  12. 12.

    J M Matera, R Rossignoli and N Canosa, Phys. Rev. A 86, 062324 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    G Adesso, S Ragy and A R Lee, Open Syst. Inf. Dyn. 21, 1440001 (2014)

    MathSciNet  Article  Google Scholar 

  14. 14.

    O Cernotk and J Fiurek, Phys. Rev. A 89, 042331 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    G Adesso and S Piano, Phys. Rev. Lett. 112, 010401 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    F Nicacio and M C de Oliveira, Phys. Rev. A 89, 012336 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    D Buono, G Nocerino, S Solimeno and A Porzio, Laser Phys. 24, 074008 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    A Cardillo, F Galve, D Zueco and J G Gardenes, Phys. Rev. A 87, 052312 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    M A Jafarizadeh and S Salimi, J. Phys. A 3913295 (2006)

  20. 20.

    M A Jafarizadeh, S Nami and F Eghbalifam, J. Stat. Mech. P05018 (2015)

  21. 21.

    Alessio Cardillo, Fernando Galve, David Zueco and Jesus Gomez-Gard\(\tilde{e}\)nes, (2012)

Download references

Author information



Corresponding author

Correspondence to Susan Nami.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, R., Nami, S. Investigation of entanglement entropy in cyclic bipartite graphs using computer software. Pramana - J Phys 95, 39 (2021).

Download citation


  • Entanglement
  • entropy
  • cyclic graphs
  • Schmidt number


  • 03.65.Ud