Detailed investigation of chaos in a Colpitts oscillator

Abstract

We investigate in detail the nonlinear and chaotic dynamics of the Colpitts oscillator. We show that we can control the dynamics of the oscillator by either inductors, capacitors or resistors in the emitter or collector network. We find the bifurcation diagram and the Lyapunov exponent of the oscillator and investigate them. We also find bifurcation diagram in 2D space when two parameters from the mentioned parameters are variables. The 2D diagram shows the nonlinear behaviour of the system more clearly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J C Sprott, Chaos and time-series analysis (Oxford University Press, Oxford, 2003)

    Google Scholar 

  2. 2.

    J Guckenheimer and P Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector (Springer, New York, 1983)

    Google Scholar 

  3. 3.

    J Thompson and H Stewart, Nonlinear dynamics and chaos (Wiley, New York, 1986)

    Google Scholar 

  4. 4.

    S N Rasban, Chaotic dynamics of nonlinear systems (Wiley, New York, 1990)

    Google Scholar 

  5. 5.

    T Yoshinaga and H Kawakami, Bifurcations and chaotic states in forced oscillatory circuits containing saturable inductors (World Scientific, Singapore, 1995)

    Google Scholar 

  6. 6.

    H Kawakami and T Yoshinaga, Bifurcation and chaos: Theory and applications (Springer, Berlin, 1995)

    Google Scholar 

  7. 7.

    T Matsumoto, IEEE Trans. Cir. Syst. 31(12), 1055 (1984)

  8. 8.

    L Chua, M Komuro and T Matsumoto, IEEE Trans. Circuits Syst. 11, (1986)

  9. 9.

    L Chua, IEICE Trans. Fundamentals 76, 704 (1993).

    Google Scholar 

  10. 10.

    J Testa, J Perez and C Jeries, Phys. Rev. Lett. 48, 714 (1982)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Yu M Shukrinov, M Hamdipour and M R Kolahchi, Phys. Rev. B 80, 014512 (2009).

    ADS  Article  Google Scholar 

  12. 12.

    Yu M Shukrinov and M Hamdipour, Europhys. Lett. 92, 37010 (2010)

    ADS  Article  Google Scholar 

  13. 13.

    Yu M Shukrinov, M Hamdipour, M R Kolahchi, A E Botha and M Suzuki, Phys. Lett. A 376, 3609 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    Y M Shukrinov, M Hamdipour, M R Kolahchi, A E Botha and M Suzuki, Physica C 491, 63 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    M Hamdipour and Y M Shukrinov, J. Phys.: Conf. Ser. 248, 012042 (2010)

    Google Scholar 

  16. 16.

    M Hamdipour, Physica C 547, 66 (2018)

    ADS  Article  Google Scholar 

  17. 17.

    M P Kennedy, IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 41, 771 (1994)

    Article  Google Scholar 

  18. 18.

    C Wegener and M P Kennedy, Proceedings of the 3rd International Specialist Workshop on Nonlinear Dynamics of Electronic Systems (NDES’95) (Dublin, Ireland, 1995) p. 255

  19. 19.

    A Tamasevicius, G Mykolaitis and S Bumeliene, Electron. Lett. 37, 549 (2001)

    ADS  Article  Google Scholar 

  20. 20.

    G Mykolaitis, A Tamasevicius and S Bumeliene, Electron. Lett. 40, 91 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    G H Li, S P Zhou and K Yang, Chaos Solitons Fractals 33, 582 (2007)

    ADS  Article  Google Scholar 

  22. 22.

    C Li, W J-C Thio, H H-C Iu and T Lu, IEEE Access 6, 12945 (2018)

    Article  Google Scholar 

  23. 23.

    C Li, J C Sprott, A Akgul, H H C Iu and Y Zhao, Chaos 27, 083101 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    C Li and J C Sprott, Phys. Lett. A 378, 178 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    C Li, J C Sprott and H Xing, Int. J. Bifurc. Chaos 26, 1650233 (2016)

    Article  Google Scholar 

  26. 26.

    L Xu, Y D Chu and Q Yang, Chaos Solitons Fractals 138, 109998 (2020)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hamdipour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behzad, F., Hamdipour, M. Detailed investigation of chaos in a Colpitts oscillator. Pramana - J Phys 95, 2 (2021). https://doi.org/10.1007/s12043-020-02040-6

Download citation

Keywords

  • Nonlinear dynamics
  • chaos
  • bifurcation
  • Colpitts oscillator

PACS Nos

  • 05.45
  • 84.30
  • 02.70